Beautiful Maths Problems

Materials for Promoting Problem Solving and Experiencing the Beauty of Mathematics

Educating the Educators III

Presenter: James R. Olsen, Ph.D.
Department of Mathematics and Philosophy
Western Illinois University
Macomb, IL 61455 USA
E-mail: JR-Olsen@wiu.edu

Common External Tangent

The radius of circle A is 5. The radius of circle B is 7. \overrightarrow{DE} is a common external tangent. Find distance DE.

Now Generalize: Use radii of r_1 and r_2 .

Geometric Mean in a Trapezoid

ABCD is a trapezoid. Diagonals \overline{AC} and \overline{BD} intersect at point E

Prove: $Area(\Delta ADE)$ is the geometric mean of $Area(\Delta DCE)$ and $Area(\Delta BAE)$.

Harmonic Mean in a Trapezoid

Given: ABCD is a trapezoid. Diagonals \overline{AC} and \overline{BD} intersect at point E. $\overline{CD} \parallel \overline{AB}$ and CD = a and AB = b. \overline{HI} is parallel to the bases and goes through E.

Prove: $HI = \frac{2ab}{a+b}$

The Three Pythagorean Means in a Circle

Given:

Circle centered at A

 \overline{BT} is a diameter

 $\overline{GM} \perp \overline{BT}$

 $\overline{HG}\perp \overline{AM}$

Show:

$$AM = \frac{GB + GT}{2}$$

$$HM = \frac{2(GB \cdot GT)}{GB + GT}$$

$$GM = \sqrt{GB \cdot GT}$$

Pythagorean in a Hexagon

Regular hexagon

Show: $a^2 + b^2 = c^2$

Golden Ratio Using the Inscribed and Circumscribed Circles

Given: Equilateral triangle and the inscribed and circumscribed circles. DE = a and DG = b.

Prove: $\frac{a}{b} = Golden \ Ratio$

Two Equilaterals in a Square https://twitter.com/HenkReuling/status/1036694353706733568

Two equilateral triangles in a square. Is more or less than half the square shaded? (What is the exact ratio?)

Given: Regular pentagon with its diagonals. AF = a, AE = b, and DF = c.

$$AF = a$$
, $AE = b$, and $DF = c$.

Circumscribe a Quadrilateral

Show the following is true:

If a quadrilateral circumscribes a circle, then the sums of its opposite sides are equal. That is, in the diagram, a+c=b+d.

By Cliff Pickover (@pickover)

The In-between rectangle in an octagon.

Inside this regular octagon sit two squares of area 8. What's the area of the shaded rectangle?

Source: https://twitter.com/Cshearer41/status/1089227396954419200

Answer: 8 https://twitter.com/sergiosanz001/status/1089249605349507074

Shaded Area=
$$(2\sqrt{2}+4)(4-2\sqrt{2})=8$$

Parallelogram in a Hexagon

In this regular hexagon, three diagonals have been drawn to form this parallelogram. What fraction of the hexagon is shaded?

The Big Finish

A quarter circle is inscribed in a square ABCD with diagonal \overline{AC} . Point G is on the circle. The tangent through G meets the square in points E and F.

Draw segments \overline{DE} and \overline{DF} . This defines H and K.

AH = 1, CK = 2. Find HK.

Source: https://twitter.com/JhuriaMikki/status/1096991539291578370