Chapter 4
Network Layer
Network layer

- transport segment from sending to receiving host
- on sending side, encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it
Two Key Network-Layer Functions

- **forwarding**: move packets from router’s input to appropriate router output

- **routing**: determine route taken by packets from source to dest.
 - **routing algorithms**

 analogy:
 - **routing**: process of planning trip from source to dest
 - **forwarding**: process of getting through single interchange
Interplay between routing and forwarding

- Routing algorithm
- Local forwarding table:
<table>
<thead>
<tr>
<th>header value</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet's header

Network Layer 4-4
Connection setup

- 3rd important function in *some* network architectures:
 - ATM, frame relay, X.25
- before datagrams flow, two end hosts and intervening routers establish virtual connection
 - routers get involved
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes
Network service model

Q: What service model for “channel” transporting datagrams from sender to receiver?

Example services for individual datagrams:
- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

Example services for a flow of datagrams:
- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing
Network layer service models:

<table>
<thead>
<tr>
<th>Network Architecture</th>
<th>Service Model</th>
<th>Guarantees?</th>
<th>Congestion feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bandwidth</td>
<td>Loss</td>
</tr>
<tr>
<td>Internet</td>
<td>best effort</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>ATM</td>
<td>CBR</td>
<td>constant rate</td>
<td>yes</td>
</tr>
<tr>
<td>ATM</td>
<td>VBR</td>
<td>guaranteed rate</td>
<td>yes</td>
</tr>
<tr>
<td>ATM</td>
<td>ABR</td>
<td>guaranteed minimum</td>
<td>no</td>
</tr>
<tr>
<td>ATM</td>
<td>UBR</td>
<td>none</td>
<td>no</td>
</tr>
</tbody>
</table>
Network layer connection and connection-less service

- datagram network provides network-layer connectionless service
- VC network provides network-layer connection service
- analogous to the transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core
Virtual circuits

“source-to-dest path behaves much like telephone circuit”
 - performance-wise
 - network actions along source-to-dest path

- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains “state” for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)
VC implementation

A VC consists of:

1. path from source to destination
2. VC numbers, one number for each link along path
3. entries in forwarding tables in routers along path

- Packet belonging to VC carries VC number (rather than dest address)
- VC number can be changed on each link.
 - New VC number comes from forwarding table
Forwarding table

Forwarding table in northwest router:

<table>
<thead>
<tr>
<th>Incoming interface</th>
<th>Incoming VC #</th>
<th>Outgoing interface</th>
<th>Outgoing VC #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Routers maintain connection state information!
Virtual circuits: signaling protocols

- used to setup, maintain, teardown VC
- used in ATM, frame-relay, X.25
- not used in today's Internet
Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of “connection”
- packets forwarded using destination host address
 - packets between same source-dest pair may take different paths
Forwarding Table

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010000 00000000 through 11001000 00010111 00011000 00000000</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 00000000 through 11001000 00010111 00011001 00000000</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011111 11111111 through 11001000 00010111 00011111 11111111</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

4 billion possible entries
Longest prefix matching

<table>
<thead>
<tr>
<th>Prefix Match</th>
<th>Link Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

Examples

DA: 11001000 00010111 00010110 10101000 Which interface?

DA: 11001000 00010111 00010000 10101010 Which interface?
Datagram or VC network: why?

Internet (datagram)
- data exchange among computers
 - “elastic” service, no strict timing req.
- “smart” end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at “edge”
- many link types
 - different characteristics
 - uniform service difficult

ATM (VC)
- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- “dumb” end systems
 - telephones
 - complexity inside network
Router Architecture Overview

Two key router functions:
- run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link
Input Port Functions

Physical layer:
- bit-level reception

Data link layer:
- e.g., Ethernet
 - see chapter 5

Decentralized switching:
- given datagram dest., lookup output port using forwarding table in input port memory
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric
Three types of switching fabrics

memory

bus

crossbar
Switching Via Memory

First generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system’s memory
- speed limited by memory bandwidth (2 bus crossings per datagram)
Switching Via a Bus

- datagram from input port memory to output port memory via a shared bus
- **bus contention**: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers
Switching Via An Interconnection Network

- overcome bus bandwidth limitations
- Banyan networks, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network
Output Ports

- **Buffering** required when datagrams arrive from fabric faster than the transmission rate
- **Scheduling discipline** chooses among queued datagrams for transmission
Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!
How much buffering?

- RFC 3439 rule of thumb: average buffering equal to “typical” RTT (say 250 msec) times link capacity C
 - e.g., $C = 10$ Gps link: 2.5 Gbit buffer
- Recent recommendation: with N flows, buffering equal to $\frac{RTT \cdot C}{\sqrt{N}}$
Input Port Queuing

- Fabric slower than input ports combined → queueing may occur at input queues
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward
- Queueing delay and loss due to input buffer overflow!
The Internet Network layer

Host, router network layer functions:

- **Routing protocols**
 - path selection
 - RIP, OSPF, BGP

- **IP protocol**
 - addressing conventions
 - datagram format
 - packet handling conventions

- **ICMP protocol**
 - error reporting
 - router “signaling”
IP datagram format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP protocol version</td>
<td>Number</td>
</tr>
<tr>
<td>Header length</td>
<td>Bytes</td>
</tr>
<tr>
<td>Type of service</td>
<td>"Type" of data</td>
</tr>
<tr>
<td>Length</td>
<td>Bytes</td>
</tr>
<tr>
<td>16-bit identifier</td>
<td>Max number remaining hops (decremented at each router)</td>
</tr>
<tr>
<td>Time to live</td>
<td>(decremented at each router)</td>
</tr>
<tr>
<td>Upper layer protocol</td>
<td>To deliver payload to</td>
</tr>
<tr>
<td>Source IP address</td>
<td>32 bit</td>
</tr>
<tr>
<td>Destination IP address</td>
<td>32 bit</td>
</tr>
<tr>
<td>Options (if any)</td>
<td>E.g. timestamp, record route taken, specify list of routers to visit.</td>
</tr>
<tr>
<td>Data</td>
<td>(Variable length, typically a TCP or UDP segment)</td>
</tr>
</tbody>
</table>

How much overhead with TCP?
- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead
IP Fragmentation & Reassembly

- Network links have MTU (max. transfer size) - largest possible link-level frame.
 - Different link types, different MTUs
- Large IP datagram divided ("fragmented") within net
 - One datagram becomes several datagrams
 - "Reassembled" only at final destination
 - IP header bits used to identify, order related fragments

Fragmentation:
- In: one large datagram
- Out: 3 smaller datagrams

Reassembly
IP Fragmentation and Reassembly

Example
- 4000 byte datagram
- MTU = 1500 bytes

One large datagram becomes several smaller datagrams

<table>
<thead>
<tr>
<th>length</th>
<th>ID</th>
<th>fragflag</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>x</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>length</th>
<th>ID</th>
<th>fragflag</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>x</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>length</th>
<th>ID</th>
<th>fragflag</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>x</td>
<td>1</td>
<td>185</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>length</th>
<th>ID</th>
<th>fragflag</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1040</td>
<td>x</td>
<td>0</td>
<td>370</td>
</tr>
</tbody>
</table>

1480 bytes in data field
offset = 1480/8
IP Addressing: introduction

- **IP address**: 32-bit identifier for host, router *interface*

- **interface**: connection between host/router and physical link
 - routers typically have multiple interfaces
 - host typically has one interface
 - IP addresses associated with each interface

```
223.1.1.1 = 11011111 00000001 00000001 00000001
223  1  1  1  1
```

Network Layer 4-31
Subnets

- **IP address:**
 - subnet part (high order bits)
 - host part (low order bits)

- **What's a subnet?**
 - device interfaces with same subnet part of IP address
 - can physically reach each other without intervening router

Network consisting of 3 subnets
Subnets

Recipe

- To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet.

Subnet mask: /24
Subnets

How many?
IP addressing: CIDR

CIDR: Classless InterDomain Routing
- subnet portion of address of arbitrary length
- address format: \texttt{a.b.c.d/x}, where \(x\) is \# bits in subnet portion of address

```
11001000  00010111  00010000  00000000
```

```
11001000  00010111  00010000  00000000
```

200.23.16.0/23
IP addresses: how to get one?

Q: How does a host get IP address?

- hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from a server
 - “plug-and-play”
DHCP: Dynamic Host Configuration Protocol

Goal: allow host to *dynamically* obtain its IP address from network server when it joins network

- Can renew its lease on an IP address in use
- Allows reuse of addresses (only hold address while connected "on")
- Support for mobile users who want to join network (more shortly)

DHCP overview:

- Host broadcasts "DHCP discover" msg
- DHCP server responds with "DHCP offer" msg
- Host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg
DHCP client-server scenario

DHCP server

arriving DHCP client needs address in this network
DHCP client-server scenario

DHCP server: 223.1.2.5

DHCP discover
- src: 0.0.0.0, 68
- dest: 255.255.255.255, 67
- yiaddr: 0.0.0.0
- transaction ID: 654

DHCP offer
- src: 223.1.2.5, 67
- dest: 255.255.255.255, 68
- yiaddr: 223.1.2.4
- transaction ID: 654
- Lifetime: 3600 secs

DHCP request
- src: 0.0.0.0, 68
- dest: 255.255.255.255, 67
- yiaddr: 223.1.2.4
- transaction ID: 655
- Lifetime: 3600 secs

DHCP ACK
- src: 223.1.2.5, 67
- dest: 255.255.255.255, 68
- yiaddr: 223.1.2.4
- transaction ID: 655
- Lifetime: 3600 secs
IP addresses: how to get one?

Q: How does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP’s address space

<table>
<thead>
<tr>
<th>ISP's block</th>
<th>11001000 00010111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000</td>
<td>200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>.....</td>
<td>....</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>
Hierarchical addressing allows efficient advertisement of routing information:

Organization 0
200.23.16.0/23

Organization 1
200.23.18.0/23

Organization 2
200.23.20.0/23

Organization 7
200.23.30.0/23

Fly-By-Night-ISP

ISPs-R-Us

Send me anything with addresses beginning 200.23.16.0/20

Send me anything with addresses beginning 199.31.0.0/16

Internet
Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

Organization 0
200.23.16.0/23

Organization 2
200.23.20.0/23

Organization 7
200.23.30.0/23

Organization 1
200.23.18.0/23

Fly-By-Night-ISP
“Send me anything with addresses beginning 200.23.16.0/20”

ISPs-R-Us
“Send me anything with addresses beginning 199.31.0.0/16 or 200.23.18.0/23”

Internet
IP addressing: the last word...

Q: How does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned Names and Numbers
- allocates addresses
- manages DNS
- assigns domain names, resolves disputes
NAT: Network Address Translation

All datagrams *leaving* local network have *same* single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)
NAT: Network Address Translation

- **Motivation:** local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one IP address for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus).
NAT: Network Address Translation

Implementation: NAT router must:

- **outgoing datagrams: replace** (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)

 ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr.

- **remember (in NAT translation table)** every (source IP address, port #) to (NAT IP address, new port #) translation pair

- **incoming datagrams: replace** (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table
NAT: Network Address Translation

1: host 10.0.0.1 sends datagram to 128.119.40.186, 80

2: NAT router changes datagram source addr from 10.0.0.1, 3345 to 138.76.29.7, 5001, updates table

3: Reply arrives dest. address: 138.76.29.7, 5001

4: NAT router changes datagram dest addr from 138.76.29.7, 5001 to 10.0.0.1, 3345

NAT translation table

<table>
<thead>
<tr>
<th>WAN side addr</th>
<th>LAN side addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>138.76.29.7, 5001</td>
<td>10.0.0.1, 3345</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Network Layer 4-47
NAT: Network Address Translation

- 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!

- NAT is controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, eg, P2P applications
 - address shortage should instead be solved by IPv6
NAT traversal problem

- client wants to connect to server with address 10.0.0.1
 - server address 10.0.0.1 local to LAN (client can’t use it as destination addr)
 - only one externally visible NATted address: 138.76.29.7

- solution 1: statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (123.76.29.7, port 2500) always forwarded to 10.0.0.1 port 25000
NAT traversal problem

- solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATted host to:
 - learn public IP address (138.76.29.7)
 - add/remove port mappings (with lease times)

i.e., automate static NAT port map configuration
NAT traversal problem

- solution 3: relaying (used in Skype)
 - NATed client establishes connection to relay
 - External client connects to relay
 - relay bridges packets between to connections
ICMP: Internet Control Message Protocol

- used by hosts & routers to communicate network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer “above” IP:
 - ICMP msgs carried in IP datagrams
- **ICMP message**: type, code plus first 8 bytes of IP datagram causing error

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>echo reply (ping)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>dest. network unreachable</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>dest host unreachable</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>dest protocol unreachable</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>dest port unreachable</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>dest network unknown</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>dest host unknown</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>source quench (congestion control - not used)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>echo request (ping)</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>route advertisement</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>router discovery</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>TTL expired</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>bad IP header</td>
</tr>
</tbody>
</table>

Network Layer 4-52
Traceroute and ICMP

- Source sends series of UDP segments to dest
 - First has TTL =1
 - Second has TTL=2, etc.
 - Unlikely port number

- When nth datagram arrives to nth router:
 - Router discards datagram
 - And sends to source an ICMP message (type 11, code 0)
 - Message includes name of router & IP address

- When ICMP message arrives, source calculates RTT
- Traceroute does this 3 times

Stopping criterion

- UDP segment eventually arrives at destination host
- Destination returns ICMP “host unreachable” packet (type 3, code 3)
- When source gets this ICMP, stops.
IPv6

- Initial motivation: 32-bit address space soon to be completely allocated.

- Additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:
 - fixed-length 40 byte header
 - no fragmentation allowed
IPv6 Header (Cont)

Priority: identify priority among datagrams in flow

Flow Label: identify datagrams in same "flow."

(concept of "flow" not well defined).

Next header: identify upper layer protocol for data

```
<table>
<thead>
<tr>
<th>ver</th>
<th>pri</th>
<th>flow label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>payload len</td>
<td>next hdr</td>
<td>hop limit</td>
</tr>
<tr>
<td>source address (128 bits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>destination address (128 bits)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

32 bits
Other Changes from IPv4

- **Checksum**: removed entirely to reduce processing time at each hop
- **Options**: allowed, but outside of header, indicated by “Next Header” field
- **ICMPv6**: new version of ICMP
 - additional message types, e.g. “Packet Too Big”
 - multicast group management functions
Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneously
 - no "flag days"
 - How will the network operate with mixed IPv4 and IPv6 routers?
- **Tunneling:** IPv6 carried as payload in IPv4 datagram among IPv4 routers
Tunneling

Logical view:

A (IPv6) --- B (IPv6) --- tunnel --- E (IPv6) --- F (IPv6)

Physical view:

A (IPv6) --- B (IPv6) --- IPv4 --- IPv4 --- E (IPv6) --- F (IPv6)
Tunneling

Logical view:

A IPv6

B IPv6
tunnel

E IPv6

F IPv6

Physical view:

A IPv6

B IPv6

C IPv4

D IPv4

E IPv6

F IPv6

Flow: X
Src: A
Dest: E

Flow: X
Src: A
Dest: F
data

A-to-B: IPv6

B-to-C: IPv6 inside IPv4

B-to-C: IPv6 inside IPv4

E-to-F: IPv6

Network Layer 4-59
Interplay between routing, forwarding

A routing algorithm

<table>
<thead>
<tr>
<th>header value</th>
<th>output link</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>3</td>
</tr>
<tr>
<td>0101</td>
<td>2</td>
</tr>
<tr>
<td>0111</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>1</td>
</tr>
</tbody>
</table>

Value in arriving packet's header

Network Layer 4-60
Graph abstraction

Graph: $G = (N,E)$

$N =$ set of routers = \{ u, v, w, x, y, z \}$

$E =$ set of links =\{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections
Graph abstraction: costs

- \(c(x,x') = \text{cost of link (}x,x'\text{)} \)
 - e.g., \(c(w,z) = 5 \)

- cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path \((x_1, x_2, x_3, \ldots, x_p) = c(x_1,x_2) + c(x_2,x_3) + \ldots + c(x_{p-1},x_p)\)

Question: What's the least-cost path between \(u\) and \(z\)?

Routing algorithm: algorithm that finds least-cost path
Routing Algorithm classification

Global or decentralized information?

Global:
- all routers have complete topology, link cost info
- “link state” algorithms

Decentralized:
- router knows physically-connected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- “distance vector” algorithms

Static or dynamic?

Static:
- routes change slowly over time

Dynamic:
- routes change more quickly
 - periodic update
 - in response to link cost changes
A Link-State Routing Algorithm

Dijkstra's algorithm
- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ("source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

Notation:
- \(c(x,y) \): link cost from node \(x \) to \(y \); \(= \infty \) if not direct neighbors
- \(D(v) \): current value of cost of path from source to dest. \(v \)
- \(p(v) \): predecessor node along path from source to \(v \)
- \(N' \): set of nodes whose least cost path definitively known
Dijsktra's Algorithm

1 Initialization:
2 \(N' = \{u\} \)
3 for all nodes \(v \)
4 if \(v \) adjacent to \(u \)
5 then \(D(v) = c(u,v) \)
6 else \(D(v) = \infty \)
7
8 Loop
9 find \(w \) not in \(N' \) such that \(D(w) \) is a minimum
10 add \(w \) to \(N' \)
11 update \(D(v) \) for all \(v \) adjacent to \(w \) and not in \(N' \) :
12 \(D(v) = \min(D(v), D(w) + c(w,v)) \)
13 /* new cost to \(v \) is either old cost to \(v \) or known
14 shortest path cost to \(w \) plus cost from \(w \) to \(v \) */
15 until all nodes in \(N' \)
Dijkstra's algorithm: example

<table>
<thead>
<tr>
<th>Step</th>
<th>N'</th>
<th>D(v),p(v)</th>
<th>D(w),p(w)</th>
<th>D(x),p(x)</th>
<th>D(y),p(y)</th>
<th>D(z),p(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>u</td>
<td>2,u</td>
<td>5,u</td>
<td>1,u</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>ux</td>
<td>2,u</td>
<td>4,x</td>
<td>2,x</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>uxy</td>
<td>2,u</td>
<td>3,y</td>
<td></td>
<td>4,y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>uxyv</td>
<td></td>
<td>3,y</td>
<td></td>
<td>4,y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>uxyvw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,y</td>
</tr>
<tr>
<td>5</td>
<td>uxyvwz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image.png)
Dijkstra’s algorithm: example (2)

Resulting shortest-path tree from u:

![Graph](image)

Resulting forwarding table in u:

<table>
<thead>
<tr>
<th>destination</th>
<th>link</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>(u,v)</td>
</tr>
<tr>
<td>x</td>
<td>(u,x)</td>
</tr>
<tr>
<td>y</td>
<td>(u,x)</td>
</tr>
<tr>
<td>w</td>
<td>(u,x)</td>
</tr>
<tr>
<td>z</td>
<td>(u,x)</td>
</tr>
</tbody>
</table>
Dijkstra’s algorithm, discussion

Algorithm complexity: n nodes
- each iteration: need to check all nodes, w, not in N
- $n(n+1)/2$ comparisons: $O(n^2)$
- more efficient implementations possible: $O(n \log n)$

Oscillations possible:
- e.g., link cost = amount of carried traffic
Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

Define
\[d_x(y) := \text{cost of least-cost path from } x \text{ to } y \]

Then

\[d_x(y) = \min_v \{ c(x,v) + d_v(y) \} \]

where min is taken over all neighbors v of x
Bellman-Ford example

Clearly, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_u(z) = \min \{ c(u,v) + d_v(z), c(u,x) + d_x(z), c(u,w) + d_w(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

Node that achieves minimum is next hop in shortest path ➔ forwarding table
Distance Vector Algorithm

- $D_x(y)$ = estimate of least cost from x to y
- Node x knows cost to each neighbor v: $c(x,v)$
- Node x maintains distance vector $D_x = [D_x(y): y \in N]$
- Node x also maintains its neighbors’ distance vectors
 - For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$

Distance Vector Algorithm

- $D_x(y)$ = estimate of least cost from x to y
- Node x knows cost to each neighbor v: $c(x,v)$
- Node x maintains distance vector $D_x = [D_x(y): y \in N]$
- Node x also maintains its neighbors’ distance vectors
 - For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$
Distance vector algorithm (4)

Basic idea:
- From time-to-time, each node sends its own distance vector estimate to neighbors
- Asynchronous
- When a node x receives new DV estimate from neighbor, it updates its own DV using B-F equation:
 \[D_x(y) \leftarrow \min_v\{c(x,v) + D_v(y)\} \quad \text{for each node } y \in N \]

- Under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$
Distance Vector Algorithm (5)

Iterative, asynchronous: each local iteration caused by:
- local link cost change
- DV update message from neighbor

Distributed:
- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

Each node:

1. Wait for (change in local link cost or msg from neighbor)
2. Recompute estimates
3. If DV to any dest has changed, notify neighbors
\[D_x(y) = \min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\} \]
\[= \min\{2+0, 7+1\} = 2 \]
\[D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\} \]
\[= \min\{2+1, 7+0\} = 3 \]
\[D_x(y) = \min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\} \]
\[= \min\{2+0, 7+1\} = 2 \]

\[D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\} \]
\[= \min\{2+1, 7+0\} = 3 \]
Distance Vector: link cost changes

Link cost changes:
- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

"good news travels fast"

At time t_0, y detects the link-cost change, updates its DV, and informs its neighbors.

At time t_1, z receives the update from y and updates its table. It computes a new least cost to x and sends its neighbors its DV.

At time t_2, y receives z’s update and updates its distance table. y’s least costs do not change and hence y does not send any message to z.
Distance Vector: link cost changes

Link cost changes:
- good news travels fast
- bad news travels slow - “count to infinity” problem!
- 44 iterations before algorithm stabilizes: see text

Poisoned reverse:
- If Z routes through Y to get to X:
 - Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to X via Z)
- will this completely solve count to infinity problem?
Comparison of LS and DV algorithms

Message complexity
- **LS**: with \(n \) nodes, \(E \) links, \(O(nE) \) msgs sent
- **DV**: exchange between neighbors only
 - convergence time varies

Speed of Convergence
- **LS**: \(O(n^2) \) algorithm requires \(O(nE) \) msgs
 - may have oscillations
- **DV**: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?
- **LS**:
 - node can advertise incorrect *link* cost
 - each node computes only its *own* table
- **DV**:
 - DV node can advertise incorrect *path* cost
 - each node’s table used by others
 - error propagate thru network
Hierarchical Routing

Our routing study thus far - idealization
- all routers identical
- network “flat”
... not true in practice

scale: with 200 million destinations:
- can’t store all dest’s in routing tables!
- routing table exchange would swamp links!

administrative autonomy
- internet = network of networks
- each network admin may want to control routing in its own network
Hierarchical Routing

- aggregate routers into regions, “autonomous systems” (AS)
- routers in same AS run same routing protocol
 - “intra-AS” routing protocol
 - routers in different AS can run different intra-AS routing protocol

Gateway router
- Direct link to router in another AS
Interconnected ASes

- Forwarding table configured by both intra- and inter-AS routing algorithm
 - intra-AS sets entries for internal dests
 - inter-AS & intra-AS sets entries for external dests
Inter-AS tasks

- Suppose router in AS1 receives datagram destined outside of AS1:
 - Router should forward packet to gateway router, but which one?

AS1 must:
1. Learn which dests are reachable through AS2, which through AS3
2. Propagate this reachability info to all routers in AS1

Job of inter-AS routing!
Example: Setting forwarding table in router 1d

- Suppose AS1 learns (via inter-AS protocol) that subnet \(x \) reachable via AS3 (gateway 1c) but not via AS2.
- Inter-AS protocol propagates reachability info to all internal routers.
- Router 1d determines from intra-AS routing info that its interface \(I \) is on the least cost path to 1c.
 - Installs forwarding table entry \((x, I) \)
Example: Choosing among multiple ASes

- now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x.
 - this is also job of inter-AS routing protocol!
Example: Choosing among multiple ASes

- now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x.
 - this is also job of inter-AS routing protocol!
- hot potato routing: send packet towards closest of two routers.

| Learn from inter-AS protocol that subnet x is reachable via multiple gateways | Use routing info from intra-AS protocol to determine costs of least-cost paths to each of the gateways | Hot potato routing: Choose the gateway that has the smallest least cost | Determine from forwarding table the interface I that leads to least-cost gateway. Enter (x, I) in forwarding table |
Intra-AS Routing

- also known as Interior Gateway Protocols (IGP)
- most common Intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)
RIP (Routing Information Protocol)

- distance vector algorithm
- included in BSD-UNIX Distribution in 1982
- distance metric: # of hops (max = 15 hops)

From router A to subnets:

<table>
<thead>
<tr>
<th>destination</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1</td>
</tr>
<tr>
<td>v</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>z</td>
<td>2</td>
</tr>
</tbody>
</table>
RIP advertisements

- distance vectors: exchanged among neighbors every 30 sec via Response Message (also called advertisement)
- each advertisement: list of up to 25 destination subnets within AS
RIP: Example

<table>
<thead>
<tr>
<th>Destination Network</th>
<th>Next Router</th>
<th>Num. of hops to dest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>x</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

Routing/Forwarding table in D
RIP: Example

<table>
<thead>
<tr>
<th>Dest</th>
<th>Next</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>z</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advertisement from A to D

Routing/Forwarding table in D

<table>
<thead>
<tr>
<th>Destination Network</th>
<th>Next Router</th>
<th>Num. of hops to dest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>z</td>
<td>B</td>
<td>7</td>
</tr>
<tr>
<td>x</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>
RIP: Link Failure and Recovery

If no advertisement heard after 180 sec -->
neighbor/link declared dead

- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly (?) propagates to entire net
- *poison reverse* used to prevent ping-pong loops
 (infinite distance = 16 hops)
RIP Table processing

- RIP routing tables managed by application-level process called route-d (daemon)
- advertisements sent in UDP packets, periodically repeated
OSPF (Open Shortest Path First)

- "open": publicly available
- uses Link State algorithm
 - LS packet dissemination
 - topology map at each node
 - route computation using Dijkstra’s algorithm
- OSPF advertisement carries one entry per neighbor router
- advertisements disseminated to entire AS (via flooding)
 - carried in OSPF messages directly over IP (rather than TCP or UDP)
OSPF “advanced” features (not in RIP)

- **Security**: all OSPF messages authenticated (to prevent malicious intrusion)
- **Multiple same-cost paths** allowed (only one path in RIP)
- For each link, multiple cost metrics for different TOS (e.g., satellite link cost set “low” for best effort; high for real time)
- **Integrated uni- and multicast support**:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- **Hierarchical** OSPF in large domains.
Hierarchical OSPF
Hierarchical OSPF

- **two-level hierarchy**: local area, backbone.
 - Link-state advertisements only in area
 - Each node has detailed area topology; only know direction (shortest path) to nets in other areas.
- **area border routers**: “summarize” distances to nets in own area, advertise to other Area Border routers.
- **backbone routers**: run OSPF routing limited to backbone.
- **boundary routers**: connect to other AS’s.
Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto standard
- BGP provides each AS a means to:
 1. Obtain subnet reachability information from neighboring ASs.
 2. Propagate reachability information to all AS-internal routers.
 3. Determine “good” routes to subnets based on reachability information and policy.
- allows subnet to advertise its existence to rest of Internet: "I am here"
BGP basics

- pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: **BGP sessions**
 - BGP sessions need not correspond to physical links.
- when AS2 advertises a prefix to AS1:
 - AS2 *promises* it will forward datagrams towards that prefix.
 - AS2 can aggregate prefixes in its advertisement
Distributing reachability info

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP to distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.
Path attributes & BGP routes

- advertised prefix includes BGP attributes.
 - prefix + attributes = “route”
- two important attributes:
 - **AS-PATH**: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - **NEXT-HOP**: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)
- when gateway router receives route advertisement, uses import policy to accept/decline.
BGP route selection

- router may learn about more than 1 route to some prefix. Router must select route.

- elimination rules:
 1. local preference value attribute: policy decision
 2. shortest AS-PATH
 3. closest NEXT-HOP router: hot potato routing
 4. additional criteria
BGP messages

- BGP messages exchanged using TCP.
- BGP messages:
 - **OPEN**: opens TCP connection to peer and authenticates sender
 - **UPDATE**: advertises new path (or withdraws old)
 - **KEEPALIVE**: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - **NOTIFICATION**: reports errors in previous msg; also used to close connection
BGP routing policy

- A, B, C are provider networks
- X, W, Y are customer (of provider networks)
- X is dual-homed: attached to two networks
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C
BGP routing policy (2)

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
 - No way! B gets no “revenue” for routing CBAW since neither W nor C are B's customers
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!
Why different Intra- and Inter-AS routing?

Policy:
- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed

Scale:
- Hierarchical routing saves table size, reduced update traffic

Performance:
- Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance
Broadcast Routing

- deliver packets from source to all other nodes
- source duplication is inefficient:

- source duplication: how does source determine recipient addresses?
In-network duplication

- **Flooding:** when node receives brdcst pckt, sends copy to all neighbors
 - Problems: cycles & broadcast storm
- **Controlled flooding:** node only brdcsts pkt if it hasn’t brdcst same packet before
 - Node keeps track of pckt ids already brdcsted
 - Or reverse path forwarding (RPF): only forward pckt if it arrived on shortest path between node and source
- **Spanning tree**
 - No redundant packets received by any node
Spanning Tree

- First construct a spanning tree
- Nodes forward copies only along spanning tree

(a) Broadcast initiated at A
(b) Broadcast initiated at D
Spanning Tree: Creation

- Center node
- Each node sends unicast join message to center node
 - Message forwarded until it arrives at a node already belonging to spanning tree

(a) Stepwise construction of spanning tree

(b) Constructed spanning tree
Multicast Routing: Problem Statement

- **Goal**: find a tree (or trees) connecting routers having local mcast group members
 - **tree**: not all paths between routers used
 - **source-based**: different tree from each sender to rcvrs
 - **shared-tree**: same tree used by all group members

![Diagram showing shared tree and source-based trees.](diagram.png)
Approaches for building mcast trees

Approaches:
- **source-based tree**: one tree per source
 - shortest path trees
 - reverse path forwarding
- **group-shared tree**: group uses one tree
 - minimal spanning (Steiner)
 - center-based trees

...we first look at basic approaches, then specific protocols adopting these approaches
Shortest Path Tree

- mcast forwarding tree: tree of shortest path routes from source to all receivers
 - Dijkstra’s algorithm

LEGEND
- router with attached group member
- router with no attached group member
- link used for forwarding, i indicates order link added by algorithm

Diagram:
- S: source
- R1, R2, R3, R4, R5, R6, R7
- Link numbers indicate order added by algorithm
Reverse Path Forwarding

- rely on router’s knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

```plaintext
if (mcast datagram received on incoming link on shortest path back to center)
   then flood datagram onto all outgoing links
else ignore datagram
```
Reverse Path Forwarding: example

- result is a source-specific reverse SPT
 - may be a bad choice with asymmetric links

LEGEND
- router with attached group member
- router with no attached group member
- datagram will be forwarded
- datagram will not be forwarded
Reverse Path Forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
 - no need to forward datagrams down subtree
 - “prune” msgs sent upstream by router with no downstream group members

LEGEND:
- router with attached group member
- router with no attached group member
- prune message
- links with multicast forwarding
Shared-Tree: Steiner Tree

- **Steiner Tree**: minimum cost tree connecting all routers with attached group members
- Problem is NP-complete
- Excellent heuristics exists
- Not used in practice:
 - Computational complexity
 - Information about entire network needed
 - Monolithic: rerun whenever a router needs to join/leave
Center-based trees

- single delivery tree shared by all
- one router identified as "center" of tree

To join:
- edge router sends unicast join-msg addressed to center router
- join-msg "processed" by intermediate routers and forwarded towards center
- join-msg either hits existing tree branch for this center, or arrives at center
- path taken by join-msg becomes new branch of tree for this router
Center-based trees: an example

Suppose R6 chosen as center:

LEGEND

- router with attached group member
- router with no attached group member
- path order in which join messages generated
Internet Multicasting Routing: DVMRP

- **DVMRP**: distance vector multicast routing protocol, RFC1075
- **flood and prune**: reverse path forwarding, source-based tree
 - RPF tree based on DVMRP’s own routing tables constructed by communicating DVMRP routers
 - no assumptions about underlying unicast
 - initial datagram to mcast group flooded everywhere via RPF
 - routers not wanting group: send upstream prune msgs
DVMRP: continued...

- **soft state:** DVMRP router periodically (1 min.) "forgets" branches are pruned:
 - Mcast data again flows down unpruned branch
 - Downstream router: reprune or else continue to receive data

- Routers can quickly regraft to tree
 - Following IGMP join at leaf

- Odds and ends
 - Commonly implemented in commercial routers
 - Mbone routing done using DVMRP
Tunneling

Q: How to connect “islands” of multicast routers in a “sea” of unicast routers?

- mcast datagram encapsulated inside “normal” (non-multicast-addressed) datagram
- normal IP datagram sent thru “tunnel” via regular IP unicast to receiving mcast router
- receiving mcast router unencapsulates to get mcast datagram
PIM: Protocol Independent Multicast

- not dependent on any specific underlying unicast routing algorithm (works with all)
- two different multicast distribution scenarios:

Dense:
- group members densely packed, in “close” proximity.
- bandwidth more plentiful

Sparse:
- # networks with group members small wrt # interconnected networks
- group members “widely dispersed”
- bandwidth not plentiful
Consequences of Sparse-Dense Dichotomy:

Dense
- group membership by routers *assumed* until routers explicitly prune
- *data-driven* construction on mcast tree (e.g., RPF)
- bandwidth and non-group-router processing *profligate*

Sparse
- no membership until routers explicitly join
- *receiver-driven* construction of mcast tree (e.g., center-based)
- bandwidth and non-group-router processing *conservative*
PIM- Dense Mode

flood-and-prune RPF, similar to DVMRP but

- underlying unicast protocol provides RPF info for incoming datagram
- less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm
- has protocol mechanism for router to detect it is a leaf-node router
PIM - Sparse Mode

- center-based approach
- router sends *join* msg to rendezvous point (RP)
 - intermediate routers update state and forward *join*
- after joining via RP, router can switch to source-specific tree
 - increased performance: less concentration, shorter paths
PIM - Sparse Mode

sender(s):
- unicast data to RP, which distributes down RP-rooted tree
- RP can extend mcast tree upstream to source
- RP can send *stop* msg if no attached receivers
 - “no one is listening!”