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Transport services and protocols

transhort
netwom
data li
hysicé
Py

O provide /ogical communication
between application processes
running on different hosts

3 transport protocols run in end
systems

O send side: breaks application
messages into segments,
passes to hetwork layer

O Receiving ;nde: reassembles k. T
segments into messages, '
passes to application layer

3 more than one transport protocol
available to applications

o Internet: TCP and UDP

data link
physical
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Transport vs. hetwork layer

O network layer: logical
communication
between hosts

3 transport layer: logical
communication
between processes

O relies on, enhances,
network layer services

Household analogy:

12 kids sending letters to
12 kids

7 processes = kids

T app messages = letters
in envelopes

7 hosts = houses

3 transport protocol =
Ann and Bill

3 network-layer protocol
= postal service
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Internet transport-layer protocols

3 reliable, in-order 'T* -
delivery (TCP) Sy )
O congestion control K (o '*=|
o flow control % ST
O cohnection setup € '
0 unreliable, unordered N e
delivery: UDP R
o no-frills extension of [ network - __

physical I nhetwork ansbo
dC(TCl ||nk ne'rwor'

"best-effort” IP
. . Al . _\x ) 5 sica ata lin
7 services hot available: : @@<ﬁ =
o delay guarantees Py, 2

O bandwidth guarantees
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Multiplexing/demultiplexing

- Demultiplexing at rcv host:

to correct socket

delivering received segments

_ Multiplexing at send host: _

gathering data from multiple
sockets, enveloping data with
header (later used for

demultiplexing)

[ ] =socket Q = process

application application application
L | |
transport vﬁ'nmsi'po/r’F Transpor?
network neTvl/or'k network
link link link
physical physical physical
host 1 host 2 host 3
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How demultiplexing works

O host receives IP datagrams

O each datagram has source
IP address, destination IP
address

O each datagram carries 1
transport-layer segment

O each segment has source,
destination port number

O host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format
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Connectionless demultiplexing

3 When host receives UDP

O Create sockets with port
segment:

humbers: ——
DatagramSocket mySocketl = new O checks quTInGTIOH port
DatagramSocket( ); number in segment
DatagramSocket mySocket2 = new O directs UDP segment to
DatagramSocket( ); socket with that port
7 UDP socket identified by number |
two-tuple: 3 IP datagrams with

different source IP
addresses and/or source
port numbers directed
to same socket

(des‘r IP address, dest port number)
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Connectionless demultiplexing

DatagramSocket serverSocket = new DatagramSocket(6428);

A A i

SP: 6428

DP: 9157

SP: 6428

DP: 5775

client
IP: A

SP: 9157

DP: 6428

server
IP: C

SP provides "return address”

SP: 5775

DP: 6428

Client
IP:B
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Connection-oriented demultiplexing

3 TCP socket identified 3 Server host may support

by 4-tuple: many simultaneous TCP
o source IP address sockets:
O source port number O each socket identified by
O dest IP address its own 4-fuple
o dest port number 3 Web servers have

7 recv host uses all four different sockets for
values to direct each connecting client

segment to appropriate O non-persistent HTTP will
socket have different socket for

each request
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Connection-oriented demultiplexing

client
IP: A

@@
i I L
SP: 5775
DP: 80
S-IP: B
D-IP:C
V4
SP: 9157 SP: 9157
DP: 80 server DP: 80
S-IP: A IP: C S-IP: B
D-IP:C D-IP:C

Client
IP:B
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Connection-oriented demultiplexing:
Threaded Web Server

— o
i I L
SP: 5775
DP: 80
S-IP: B
D-IP:C
V4
SP: 9157 SP: 9157
client | DP: 80 server BP: 80 Client
IP: A | S-IP:A IP: C S-IP: B IP:B
D-IP:C D-IP:C
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UDP: User Datagram Protocol [RFC 768]

3 “no frills," “"bare bones”
Internet transport Why s there a UDP?
E)ro’rocol . 7 no connection
7 “"best effort” service, UDP establishment (which can
segments may be: add delay)
O lost O simple: no connection state
O delivered out of order at sender, receiver
To app 7 small segment header
O connectionless: T no congestion control: UDP
O ho handshaking between can blast away as fast as
UDP sender, receiver desired
O each UDP segment

handled independently
of others
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UDP: more

J often used for streaming

multimedia apps = 32 bits

O loss tolerant Length, in |Source port #| dest port #
O rate sensitive bytes of UDP [~ length checksum
e e
3 other UDP uses Singmds‘g
o DNS header
O SNMP
3 reliable transfer over UDP: Application
add reliability at data
application layer (message)
O application-specific

error recovery!
UDP segment format
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UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Sender: Receiver:
3 treat segment contents 3 compute checksum of
as sequence of 16-bit received segment
integers O check if computed checksum
O checksum: addition (1's equals checksum field value:
complement sum) of o NO - error detected
segment contents O YES - no error detected.
0 sender puts checksum But maybe errors
value into UDP checksum nonetheless? More later

field
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Internet Checksum Example

3 Note

O When adding numbers, a carryout from the
most significant bit needs to be added to the
result

0 Example: add two 16-bit integers

11100110011 00110
110101010101 0101

wraparound (1)1 001 1 1 01110111011

sum

1011101110111 100
checksum 0100010001 O00O0OO011
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Principles of Reliable data transfer

3 important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process
| 1

L()relioble c:hc:mhel)j

a

application
layer

fransport
layer

(a) provided service

[ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)
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Principles of Reliable data transfer

3 important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process

| &= [gare]

a

application
layer

L()relioble c:hc:mhel)j

fransport
layer

Junreliable Chonnel)i

(a) provided service (b) service implementation

[ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)
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Principles of Reliable data transfer

3 important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process
| 1

dt d
L()relioble c:hc:mhel)j rct_send ()
reliable data

a

application
layer

deliver data()
reliable data

=
Q

ORN()

B > transfer protocol transfer protocol

% O (sending side) (receiving side)

= udt_send()i [packet | [ packet| Irdt rev ()

Junreliable Chonnel)i

(a) provided service (b) service implementation

[ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)
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Religble data transfer: getting started

rdt_send(): called from above, deliver_data(): called by

(e.g., by app.). Passed data to rdt to deliver data to upper
deliver to receiver upper layer /
rdt_send() data Tdeliver_data()

send [elidble data relicble data receive
id fransfer protocol transfer protocol id
Slde  |sending side) (receiving side) siae

udt_send()l packet packet Irdt rcv ()
T—»()unreliclble channel )<T

udt_send(): called by rdt, rdt_rcv(): called when packet
to transfer packet over arrives on rcv-side of channel

unreliable channel to receiver
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Reliable data transfer: getting started

we'll:

O incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

3 consider only unidirectional data transfer
O but control info will flow on both directions!

7 use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

state: when in this
"state” next state
uniquely determined
by next event

/ \
event
actions )
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Rd11.0: reliable transfer over a reliable channel

3 underlying channel perfectly reliable
O ho bit errors
O no loss of packets

0 separate FSMs for sender, receiver:

O sender sends data into underlying channel
O receiver read data from underlying channel

rdt_rcv(packet)

“Y\Wait for
call from
below

s\ ait for rdt_send(data)
call from

above

extract (packet,data)

packet = make_pki(data) deliver_data(data)

udt_send(packet)

sender receiver



Rdt2.0: channel with bit errors

0 underlying channel may flip bits in packet
o checksum to detect bit errors

3 the question: how to recover from errors:

O acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

O negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

O sender retransmits pkt on receipt of NAK

3 new mechanisms in rdt2.0 (beyond rdtl1.0):

O error detection
O receiver feedback: control msgs (ACK,NAK) rcvr->sender
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rdt2.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

Wait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)
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rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt

B

rdt_rcv(rcvpkt) &&

Wait for ISNAK(rcvpkt)

call from
above

rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

. C

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
=
A

rdt rcv( rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)
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rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

t rcv(rcvpkt) &&
ISNAR 3

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt send(NAK

call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt) A
=
A

call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)
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rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

7 sender doesn't know what
happened at receiver!

O can't just retransmit:
possible duplicate

Handling duplicates:

[ sender retransmits current
pkt if ACK/NAK garbled

O sender adds seguence
number to each pkt

O receiver discards (doesn't
deliver up) duplicate pkt

—stop and wait
Sender sends one packef,
then waits for receiver
response
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rdt2.1: sender, handles garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
ISNAK(rcvpkt) )

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt) rdt_rcv(rcvpkt)
&& isACK(rcvpkt) && notcorrupt(revpk)
&& iISACK(rcvpkt)
A

A

Wait for
ACK or

Wait for
call 1 from

rdt_rcv(rcvpkt) && NAK 1 above

( corrupt(rcvpkt) ||

iSNAK(rcvpkt) ) rdt_send(data)

udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)
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rdt2.1. receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)
\ udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) && rdt_rcv(rcvpkt) &&

not corrupt(rcvpkt) && < not corrupt(rcvpkt) &&
has_seq1(rcvpkt) has seqO(rcvpkt)
sndpkt = make_pkt(ACK, chksum) sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt
N (snelpkc) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) udt_send(sndpkt)

&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)
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rdt2.1: discussion

Sender:
0 seq # added to pkt

0 two seq. #'s (0,1) will
suffice. Why?

3 must check if received
ACK/NAK corrupted

O twice as many states

O state must “remember”
whether "current” pkt
has O or 1 seq. #

Receiver:

A must check if received
packet is duplicate

O state indicates whether
O or 1 is expected pkt
seq #
3 note: receiver can not
know if its last
ACK/NAK received OK

at sender
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rdt2.2: a NAK-free protocol

7 same functionality as rdt2.1, using ACKs only

7 instead of NAK, receiver sends ACK for last pkt
received OK
O receiver must explicitly include seq # of pkt being ACKed

O duplicate ACK at sender results in same action as
NAK: retfransmit current pkt
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rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

S~ — T
o Wait for ( _corrupt(rcvpkt) |
...................... call 0 from ACK ISACK(revpkt.1))
.................................... above 0 udt_send(sndpkt)
.............................................. sender FSM
............................................... fragment rdt_rcv(rcvpkt)
.................................... && notcorrupt(rcvpkt)
ook ee T && isACK(rcvpkt,0)
(corrupt(revpkt) || —~ T A
has_seq1(rcvpkt)) receiver FSM "
T — fragmen’r ...........................................
___ e

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make pkt(ACK1, chksum)
udt_send(sndpkt)
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rdt3.0: channels with errors andloss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

O checksum, seq. #, ACKs,

retransmissions will be
of help, but not enough

Approach: sender waits
"reasonable” amount of
time for ACK

A retransmits if no ACK
received in this time

O if pkt (or ACK) just delayed
(not lost):

O retransmission will be
duplicate, but use of seq.
#'s already handles this

O receiver must specify seq
# of pkt being ACKed

O requires countdown timer
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rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum) ( corrupt(rcvpkt) ||
\ udt_sgnd(sndpkt) iISACK(rcvpkt,1) )
rdt_rcv(rcvpkt) \ start_timer A
A o
V\I/Ia(')tffor timeout
Caabocgm udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer Q

rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
ISACK(rcvpkt,0) )

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer
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rdt3.0 in action

sender receiver
send pkt0 sl
e \ rcv pkiO
ACK send ACKO
rcv ACKO
send pktl kf]
rcv pkil
ACK send ACK]1
rcvACKT
send pkiO Kt g
rcv pkio
ACK send ACKO

(a) operation with no loss

sender receiver
It
send pkiO 0 ey pki0
ACK send ACKO
rcv ACKO
send pkt1 7 \%
(loss)
fimeout  _|
resend pkt] %
rcv pktl
ACK send ACKT
rcvACK ot
send pkiO

rcv pki0
}@/ send ACKO

(b) lost packet
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rdt3.0 in action

sender receiver sender receiver
SRCERY %’ oV i fend pab \%’ eV pki0
ACK send ACKO ACK send ACKO

rcv ACKO - rcv ACKO _
send pkﬂ DKT] send pkﬂ
[cv glg\]CK] [cv pkﬂC
ACK sen send ACK1
(loss) )(A'y
fimeout
fimeout = pkt 4 resend pkil
resend pki1 \rcv Pkt rcv pki1
ACK (detect duplicate) rcvACK( (detect duplicate)
e send ACKT send pki0 send ACK1
S;\T{Id okiO kt rcv pkio
v oki0 send ACKO
ACK ) ACK @
send ACKO
(c) lost ACK (d) premature timeout
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Performance of rdt+3.0

7 rdt3.0 works, but performance stinks
0 ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits
trans R 109 bpS

O U . pger Utilization - fraction of time sender busy sending

= 8microseconds

y  -_ L/R 008

der™ = = 0.00027
sender  RTT+L/R 30008

O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
O network protocol limits use of physical resources!
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rd13.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —fsg-------------oomooooe
last packet bit transmitted, t = L/ R ¢

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next|
packet, t =RTT+L/R

U ~ L/R 008

der™ = = 0.00027
sender  RTT+L/R 30008
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Pipelined protocols

Pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
o buffering at sender and/or receiver

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

3 Two generic forms of pipelined protocols: go-Back-N,
selective repeat
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Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fx---- -
last bit transmitted, t=L/R

first packet bit arrives
last packet bit arrives, send ACK

~ > last bit of 2nd packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next|
packet, t=RTT +L/R |3

........................ Increase utilization
............................ ' / by a factor of 3!
U _ 3*L/R _ .024

= = = 0.0008
sender  pyTL.| /R 30.008
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Pipelining Protocols

Go-back-N: big picture:

0 Sender can have up to
N unacked packets in
pipeline

3 Rcvr only sends
cumulative acks
o Doesn't ack packet if

there's a gap

J Sender has timer for

oldest unacked packet

o If timer expires,
retransmit all unacked
packets

Selective Repeat: big pic

0 Sender can have up to
N unacked packets in
pipeline

3 Rcvr acks individual
packets

7 Sender maintains
timer for each
unacked packet

O When timer expires,
retransmit only unack
packet
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Selective repeat: big picture

0 Sender can have up to N unacked packets
in pipeline
3 Revr acks individual packets

[ Sender maintains timer for each unacked
packet

O When timer expires, retransmit only unack
packet
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Go-Back-N

Sender:
O k-bit seq # in pkt header
J "window" of up to N, consecutive unack'ed pkts allowed

send_base  nhextseqgnum dlready Usable. nof
l' J, ack’ed yet sent
JIIE DL TTETLO0N0000 | septampra ] ot
2 window size —%4
N

O ACK(n): ACKs all pkts up to, including seq # n - "cumulative ACK"
O may receive duplicate ACKs (see receiver)

O timer for each in-flight pkt

O timeout(n): retransmit pkt n and all higher seq # pkts in window
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GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextsegnum])
if (base == nextseqnum)
start_timer
nextsegnum-++
.. }
A else

base=1 * refuse_data(data)

nextsegnum=1

< ‘ timeout
start_timer
3 udt_send(sndpkt[base])
C‘ U udt_send(sndpkt[base+1])

udt_send(sndpkt[nextseqgnum-1])

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else
start_timer 3-43



GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rcv(rcvpkt)
- C ) && notcurrupt(rcvpkt)

A T~ - && hasseqgnum(rcvpkt,expectedsegnum)
= -

expectedsegnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedsegnum,ACK,chksum) shdpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)

expectedsegnum++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #

O may generate duplicate ACKs
O need only remember expectedsegnum

O out-of-order pkt:
o discard (don't buffer) -> no receiver buffering!
O Re-ACK pkt with highest in-order seq #
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GBN in

action

sender

send pkt0
send pktl

¥ send pki?2

send pkt3
(wait)

rcv ACKO
send pkt4

rcv ACK]

—pkt2 timeout
send pkiZ
send pkt3
send pkt4
send pktd

receiver

\
\(|§SS)

ja\

send pkts \

—
~

rcv pkto
send ACKO

rcv pkil
send ACK

rcv pkt3, discard
send ACK

rcv pkid, discard
send ACK

rcv pkid, discard
sencpj) ACK]

rcv pkit2, deliver

send ACK?2
rcv pkt3, deliver

send ACK3
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Selective Repeat

O receiver /ndividually acknowledges all correctly
received pkts

O buffers pkts, as needed, for eventual in-order delivery
to upper layer

7 sender only resends pkts for which ACK not
received
O sender timer for each unACKed pkt

7 sender window
O N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts
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Selective repeat: sender, receiver windows

send_base  hextsegnum already Lsable. not
i' i ack’ed yet sent
L0 =Ry e
t __ window size —4
N

(a) sender view of seguence numbers

out of order

acceptable
(buffered) but ¥ (\yithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂl||||||||||||||]|]|] |opectes et | reteseer

t _ window size—24

1 N

rcv_base

(b) receiver view of sequence humbers
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Selective repeat

—senden —receiver

data from above : ka N IN [rcvbase, revbase+N-1]
3 if next available seq # in 3 send ACK(n)

window, send pkt 7 out-of-order: buffer
timeout(n): 7 in-order: deliver (also
O resend pkt n, restart timer deliver buffered, in-order

_ pkts), advance window to

ACK(H) IN [sendbase,sendbase+N]: next not-yet-received pkt

3 mark pkt n as received

_ ka nin [rcvbase-N,rcvbase-1]
O if n smallest unACKed pkt,

advance window base to . ACK(n.)
next unACKed seq # otherwise:
O ighore
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Selective repeat in action

pktl =ent
o012 3

pktl =ent
o123

pkt? =ent
o012 3

0123

pkt3 =ent.
4 5 6 7 89

4 56 7879

window full

ACKD rowd, pktd ==nt

o1 2 3 4

e 789

ACK]1 rowd, pkti =ent

01

& 3456 789

—— pkt2 TIMEOUT, pkt? resent

01

& 3456 789

ACK3 rowd, nothing sent

01

23456 789

0

1 2 3 4|5

4 56 7 89 _—ﬁ_\m—‘_———* pktl rowd, deliwvered. ACED =ent

B 7 89

pktl rocvd, delivered. ACE]l =ent

01
456 789 Wy

(lozs)

2 345

B 7 8 93

pkt3 rovd, buffered. ACKI sent

01

2 345

B 7 8 9

pktd rocwd, buf fered. ACKE4d =ent

n1

pktS rowd.
n1

2345

2345

B 7 89

buf fersed. ACKS =ent

B 7 89

pkt? rowd, pkt?. pkt3d,. pltd plth
delivered, ACKZ? =ent

o123 46%5k

B 7 89
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sender window
(after receipt)

receiver window
(after receipt)

Selective repeat:

dilemma

Example:
0 seq#'s:0,1,2,3
3 window size=3

[ receiver sees ho
difference in two
scenarios!

O incorrectly passes

duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

ktO
0123012E

o1 2 3jJ01 2

012301 o012 30]1 2

012|301 2

012)301)2

ACK2
timeout
retransmit pktO
012|301 fkto -9 receive packet

with seq number O

(a)

sender window
(after receipt )

ktO
01230129

receiver window
(after receipt)

Ol 2 310. 1 2

ktl
012|301 o1l230]1 2
CK1
0121301 012lz301]2
ACK2
ol1 2 3o 1
01230}

receive packet
with seq number O

()
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TCP: Overview rrcs: 793, 1122, 1323, 2018, 2581

0 point-to-point: 0 full duplex data:
O ohe sender, one receiver O bi-directional data flow
3 reliable, in-order byte I same connection
steam: O MSS: maximum segment
size

O nho "message boundaries”
0 pipelined:
O TCP congestion and flow
control set window size

[ connection-oriented:

O handshaking (exchange
of control msgs) init's
sender, receiver state

0 send & receive buffers before data exchange

3 flow controlled:
. O sender will not

door

overwhelm receiver
receive buffer

socket
door —

send buffer

() Segment] —p ()
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TCP segment structure

URG: urgent data

source port #

32 bits

dest port #

counting

(generally not used)™_
ACK: ACK #

~

sequence number

by bytes
of data

valid

(not segmentsl)

PSH: push data now
(generally not used)—|

cknowledgement number
h[ead o APRIS|F| Receive window

cheeksum,

Urg data pnter

# bytes
rcvr willing

RST, SYN, FIN:—
connection estab

_—
Op‘r/ie'(s (variable length)

to accept

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)
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TCP seq. #'s and ACKs

Seq. #'s:

O byte stream
"number” of first
byte in segment’s
data

ACKs:

O seq # of next byte
expected from
other side

o cumulative ACK

Q: how receiver handles
out-of-order segments

O A: TCP spec doesn't
say, - up to
implementor

host ACKs
receipt
of echoed
C

receipt of
'C', echoes
back 'C’

‘

simple telnet scenario

time
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TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

3 longer than RTT
O but RTT varies

3 too short: premature
Timeout

O unnecessary
retransmissions

3 too long: slow reaction
to segment loss

Q: how to estimate RTT?

0 SampleRTT: measured time from
segment transmission until ACK
receipt

O ighore retransmissions

0 SampleRTT will vary, want
estimated RTT “smoother”

O average several recent

measurements, not just
current SampleRTT
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TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + o*SampleRTT

O Exponential weighted moving average
O influence of past sample decreases exponentially fast
O typical value: o = 0.125
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Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 -

300

T I A ﬂ

LAl MMy ‘ﬂh..!. e .'_.‘f“.mlnu .!vlvllﬂﬂ\‘"l‘ﬂl"hl‘-l‘m

[

a1

o
=—

RTT (milliseconds)

[
o
(=]

150

1 00 T T T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

—— SampleRTT —8&— Estimated RTT
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TCP Round Trip Time and Timeout

Setting the timeout

O EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

O first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT]|

(typically, B = 0.25)

Then set timeout interval:

Timeoutlnterval = EstimatedRTT + 4*DevRTT
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TCP reliable data transfer

3 TCP creates rdt 3 Retransmissions are
service on top of IP's triggered by:
unreliable service O timeout events

7 Pipelined segments O duplicate acks

7 Cumulative acks 3 Initially consider

simplified TCP sender:
O ignore duplicate acks

O ighore flow control,
congestion control

3 TCP uses single
retransmission timer
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TCP sender events:

data rcvd from app:

O Create segment with
seq #

0 seq # is byte-stream
number of first data
byte in segment

3 start timer if not
already running (think
of timer as for oldest
unacked segment)

O expiration interval:
TimeOutilnterval

timeout:

O reftransmit segment
that caused timeout

3 restart timer
Ack rcvd:

O If acknowledges
previously unacked
segments

O update what is known to
be acked

o start timer if there are
outstanding segments
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NextSeqNum = InitialSeqNum
SendBase = InitialSegNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /* end of loop forever */

TCP

sender

(simplified)

Comment:

- SendBase-1: last
cumulatively
ack'ed byte
Example:

- SendBase-1 =71,
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked
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TCP: retransmission scenarios

SendBase

=100

«—timeout —

v
time

lost ACK scenario

Sendbase
= 100
SendBase
=120

SendBase
=120

92 Timeou’r—>|

92 timeout —+— Seq

eq=

YD)
3
v

time

premature timeout
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TCP retransmission scenarios (more)

Host B

Seq=
I 292, 8 by e, o
+ =A0
3 Se = G\(’
S 32100, 20 P\sd
€ ata
= X

=120

A\

X
SendBase )\C“/

time '
Cumulative ACK scenario
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TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap
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Fast Retransmit

O Time-out period often
relatively long:
O long delay before
resending lost packet
0 Detect lost segments
via duplicate ACKs.

O Sender often sends
many segments back-to-
back

o If segment is lost,
there will likely be many
duplicate ACKs.

O If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

O fast retransmit: resend
segment before timer
expires
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Host A

timeout

[esenq 2nd
289men;

—_——

v v

time

Figure 3.37 Resending a segment after triple duplicate ACK 3-65



Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
iIf (there are currently not-yet-acknowledged segments)
start timer
}
else {
iIncrement count of dup ACKSs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence numbery

}
i \

a duplicate ACK for fast retransmit
already ACKed segment
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TCP Flow Control

7 receive side of TCP
connection has a
receive buffer:

k— RevWindow —f

007
///

7, / 7, /
'|l— RevBuffer —I‘*

data from
IP

T app process may be
slow at reading from

buffer

application
process

-flow control
sender won't overflow
receiver's buffer by
transmitting too much,
too fast

7 speed-matching
service: matching the
send rate to the
receiving app's drain
rate
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TCP Flow control: how it works

k— RevWindow —f

007 0 Rcvr advertises spare
/ | wleion  OOM by including value

data from

o e of RevWindow in
Z / 22 segments
pe 7 Sender limits unACKed
(Suppose TCP receiver data to RevWindow
discards out-of-order o guarantees receive
segments) buffer doesn't overflow
3 spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]
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TCP Connection Management

Recall: TCP sender, receiver
establish “"connection”
before exchanging data
segments

3 initialize TCP variables:
O seq. #s

o buffers, flow control
info (e.g. RcvWindow)

3 client: connection initiator

Socket clientSocket = new
Socket("*"hostname™,"port

number') ;

O server: contacted by client

Socket connectionSocket =
wellcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

O specifies initial seq #
O ho data
Step 2: server host receives

SYN, replies with SYNACK
segment

o server allocates buffers

O specifies server initial
seq. #

Step 3: client receives SYNACK,

replies with ACK segment,
which may contain data
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TCP Connection Management (cont.)

Closing a connection: @ client server@

: , close
client closes socket: FIN
clientSocket.close();
Step 1: client end system pCE close
sends TCP FIN control e
segment to server .
k

-

Step 2: server receives i
FIN, replies with ACK. ge
Closes connection, sends
FIN.
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TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

o Enters “timed wait" -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

@ client server@

FIN
cK :
/ CIOSlng
/
K

+=
(@]
=
Be) closed

Q
E
+—
d-

close
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TCP Connection Management (cont)

wiait 30 seconds

CLOSED

TIME_WAIT

F Y

receie FIM
send ACK

FIN_WAIT_2

receie ACK
zend nathing

TCP client
lifecycle

client application
initiates a TCP connection

send SN

SYN_SENT

receive SYM & ACK
send ACK

¥

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIM CLOSED

receve ACK
send nothing

LAST_ACK
A

send FIM

CLOSE_WAIT

TCP server
lifecycle

server application

creates a listen socket

LISTEN

receive 57N
send SYM & ACK

4

SYN_RCVD

receive FIN

send ACHK ESTABLISHED

receive ACK
send nothing
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Principles of Congestion Control

Congestion:

3 informally: "too many sources sending too much
data too fast for network to handle"

0 different from flow control!
J manifestations:
O lost packets (buffer overflow at routers)
o long delays (queueing in router buffers)
3 a top-10 problem!
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Causes/costs of congestion: scenario 1

Host A - onginal d xom
3 two senders, two MR AR
receivers
Host B unlimiged shared
D One r‘OUTer‘, ° output link buffers

infinite buffers —
[ no retransmission -

3 large delays
when congested

O maximum
achievable
throughput

Cl2+

?\'ou’r
delay

C/2
7\' in
3-74



Causes/costs of congestion: scenario 2

3 one router, finite buffers
3 sender retransmission of lost packet

HOStA 4 . original Mo

data
A'i, - original data, plus A
retransmitted data

finite shared output
link buffers
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Causes/costs of congestion: scenario 2

J always: A, = kOUt (goodput)
in
3 “perfect” retransmission only when loss: )" > )

in

O retransmission of delayed (not lost) packet mak

(than perfect case) for same )
0

R/2

“costs” of congestion:

, R/2
Kin

a

+—

I}
<

R/2

R/3

ut

R/2

R/2

O more work (retrans) for given "goodput”

O unneeded retransmissions: link carries multiple copies of pkt

out

/
es kin larger

R/2
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Causes/costs of congestion: scenario 3

m four'.sender's Q: what happens as A
7 multihop paths and A’ increase ?
O timeout/retransmit In

Host A "

A, - original data out

A’ original data, plus
retransmitted data

finite shared output
link buffers

L1
1] |
!

\
Host B
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Causes/costs of congestion: scenario 3

C/2

3 o
<

k!
N
Another "cost"” of congestion:

3 when packet dropped, any “upstream transmission
capacity used for that packet was wasted!
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Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted
control: congestion control:

3 no explicit feedback from O routers provide feedback
network to end systems

T congestion inferred from O single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,

ATM)

o explicit rate sender
should send at

3 approach taken by TCP
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Case study: ATM ABR congestion control

ABR: available bit rate:

7 “elastic service"

O if sender's path
“underloaded":

O sender should use
available bandwidth

O if sender's path
congested:

O sender throttled to
minimum guaranteed
rate

RM (resource management)

O

O

cells:

sent by sender, interspersed
with data cells

bits in RM cell set by switches
("network-assisted”)

o NI bit: no increase in rate
(mild congestion)

O CI bit: congestion
indication
RM cells returned to sender by
receiver, with bits intact
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Case study: ATM ABR congestion control

I RM cells
source D data cells destination

Switch Switch

Ll il =

3 two-byte ER (explicit rate) field in RM cell

O congested switch may lower ER value in cell
O sender’ send rate thus maximum supportable rate on path

O EFCI bit in data cells: set to 1 in congested switch

O if data cell preceding RM cell has EFCI set, sender sets CI
bit in returned RM cell
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TCP congestion control: additive increase,
multiplicative decrease
O Approach:increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

O additive increase. increase CongWin by 1 MSS
every RTT until loss detected

o multiplicative decrease. cut CongWin in half after
loss

24 Kbytes —

Saw tooth
behavior: probing
for bandwidth

16 Kbytes —

8 Kbytes —

congestion window size

time
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TCP Congestion Control: details

0 sender limits transmission:
LastByteSent-LastByteAcked
< CongWin

3 Roughly,

How does sender

CongWin
RTT

rate =

Bytes/sec

0 CongWin is dynamic, function
of perceived network
congestion

perceive congestion?

7 loss event = timeout or
3 duplicate acks

3 TCP sender reduces
rate (CongWin) after

loss event
three mechanisms:

o AIMD
o slow start

O conservative after
timeout events
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TCP Slow Start

0 When connection begins, O When connection begins,

CongWin =1 MSS increase rate
o Example: MSS = 500 exponentially fast until
bytes & RTT = 200 msec first loss event

O initial rate = 20 kbps

3 available bandwidth may
be >> MSS/RTT

O desirable to quickly ramp
up to respectable rate
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TCP Slow Start (more)

3 When connection
begins, increase rate
exponentially until
first loss event:

O double CongWin every
RTT

O done by incrementing
CongWin for every ACK

received
7 Summary: initial rate
is slow but ramps up
exponentially fast

QUr segments

time
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Refinement: inferring loss

0 After 3 dup ACKs:

o CongWin is cut in half —_ Philosophy:

O window then grows
linearly 0 3 dup ACKs indicates

network capable of

J But after timeout event: e
delivering some segments

O CongWin instead set to O timeout indicates a

LMSS: “more alarming”

O window ’rhen grows congestion scenario
exponentially

o to a threshold, then
grows linearly
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Refinement

Q: When should the
exponential
increase switch to 149 TCP Series 2 Reno
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout. 2-

_;
P
|

_| Threshold

Threshold

Transmission round

TCP Series 1 Tahoe

rFr Tt +r 1> 1 ©° 17 [ 7T
01 2 3 4 5 6 7 8 9 10111213 14 15

ImplemenTGTlOHI Transrrission round
3 Variable Threshold

O At loss event, Threshold is
set to 1/2 of CongWin just
before loss event
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Summary: TCP Congestion Control

3 When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

7 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

3 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

3 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.
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TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1 MSS every RTT
data
SS or CA Loss event Threshold = CongWin/2, Fast recovery,
detected by CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SS or CA Timeout Threshold = CongWin/2, Enter slow start
CongWin =1 MSS,
Set state to “Slow Start”
SSorCA Duplicate Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed
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TCP throughput

3 What's the average throughout of TCP as a
function of window size and RTT?

o Ignore slow start
7 Let W be the window size when loss occurs.
3 When window is W, throughput is W/RTT

3 Just after loss, window drops to W/2,
throughput to W/2RTT.

3 Average throughout: .75 W/RTT
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TCP Futures: TCP over "long, fat pipes”

0 Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

7 Requires window size W = 83,333 in-flight
segments

3 Throughput in terms of loss rate:
1.22-MSS
RTT/L

d = L=2101 Wow
3 New versions of TCP for high-speed
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TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

1 >
TCPMW“Q‘*

connection 2 rou‘fer
capacity R
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Why is

TCP fair?

Two competing sessions:
J Additive increase gives slope of 1, as throughout increases

O multiplicati

Connection 2 throughput

ve decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

3-93



Fairness (more)

Fairness and UDP Fairness and parallel TCP
7 Multimedia apps often ~ connections
do not use TCP 3 nothing prevents app from
O do not want rate opening .PGY‘ClI'el
throttled by congestion connections between 2
control hosts.
3 Instead use UDP: 7 Web browsers do this
O pump GUdiO/Videol at 1 Example: link of rate R
;ggig‘r%ggm' folerate supporting 9 connections;
- Re;earch area: TCP Q :‘\sr/ea‘g}algsks for 1 TCP, gets
friendly O new app asks for 11 TCPs,

gets R/2 |

3-94



	Slide Number 1
	Transport services and protocols
	Transport vs. network layer
	Internet transport-layer protocols
	Multiplexing/demultiplexing
	How demultiplexing works
	Connectionless demultiplexing
	Connectionless demultiplexing
	Connection-oriented demultiplexing
	Connection-oriented demultiplexing
	Connection-oriented demultiplexing: Threaded Web Server
	UDP: User Datagram Protocol [RFC 768]
	UDP: more
	UDP checksum
	Internet Checksum Example
	Principles of Reliable data transfer
	Principles of Reliable data transfer
	Principles of Reliable data transfer
	Reliable data transfer: getting started
	Reliable data transfer: getting started
	Rdt1.0: reliable transfer over a reliable channel
	Rdt2.0: channel with bit errors
	rdt2.0: FSM specification
	rdt2.0: operation with no errors
	rdt2.0: error scenario
	rdt2.0 has a fatal flaw!
	rdt2.1: sender, handles garbled ACK/NAKs
	rdt2.1: receiver, handles garbled ACK/NAKs
	rdt2.1: discussion
	rdt2.2: a NAK-free protocol
	rdt2.2: sender, receiver fragments
	rdt3.0: channels with errors and loss
	rdt3.0 sender
	rdt3.0 in action
	rdt3.0 in action
	Performance of rdt3.0
	rdt3.0: stop-and-wait operation
	Pipelined protocols
	Pipelining: increased utilization
	Pipelining Protocols
	Selective repeat: big picture
	Go-Back-N
	GBN: sender extended FSM
	GBN: receiver extended FSM
	GBN in�action
	Selective Repeat
	Selective repeat: sender, receiver windows
	Selective repeat
	Selective repeat in action
	Selective repeat:� dilemma
	TCP: Overview   RFCs: 793, 1122, 1323, 2018, 2581
	TCP segment structure
	TCP seq. #’s and ACKs
	TCP Round Trip Time and Timeout
	TCP Round Trip Time and Timeout
	Example RTT estimation:
	TCP Round Trip Time and Timeout
	TCP reliable data transfer
	TCP sender events:
	TCP �sender�(simplified)
	TCP: retransmission scenarios
	TCP retransmission scenarios (more)
	TCP ACK generation [RFC 1122, RFC 2581]
	Fast  Retransmit
	Slide Number 65
	Fast retransmit algorithm:
	TCP Flow Control
	TCP Flow control: how it works
	TCP Connection Management
	TCP Connection Management (cont.)
	TCP Connection Management (cont.)
	TCP Connection Management (cont)
	Principles of Congestion Control
	Causes/costs of congestion: scenario 1 
	Causes/costs of congestion: scenario 2 
	Causes/costs of congestion: scenario 2 
	Causes/costs of congestion: scenario 3 
	Causes/costs of congestion: scenario 3 
	Approaches towards congestion control
	Case study: ATM ABR congestion control
	Case study: ATM ABR congestion control
	TCP congestion control: additive increase, multiplicative decrease
	TCP Congestion Control: details
	TCP Slow Start
	TCP Slow Start (more)
	Refinement: inferring loss
	Refinement
	Summary: TCP Congestion Control
	TCP sender congestion control
	TCP throughput
	TCP Futures: TCP over “long, fat pipes”
	TCP Fairness
	Why is TCP fair?
	Fairness (more)

