

Data-Link Layer:

5-1 INTRODUCTION

The Internet is

- a combination of networks glued together by connecting devices
- If a datagram is to travel from a host to another host, it needs to pass through these networks.

Communication at the data-link layer

Nodes and Links

- Communication at the application, transport, and network layers → end-to-end
- Communication at the data-link layer → node-to node.
- It is customary to refer to the two end hosts and the routers as nodes and the networks in between as links.

Nodes and Links

Error Detection and Correction

- At the data-link layer, if a frame is corrupted between the two nodes, it needs to be corrected before it continues its journey to other nodes.
- Most link-layer protocols simply discard the frame and let the upper-layer protocols handle the retransmission of the frame.

Single-bit and burst error

Division in CRC encoder

Division in the CRC decoder for two cases

Standard polynomials

Name	Binary	Application
CRC-8	10000111	ATM header
CRC-10	11000110101	ATM AAL
CRC-16	1000100000100001	HDLC
CRC-32	100000100110000010001110110110111	LANs

Checksum

MULTIPLE ACCESS PROTOCOLS

Taxonomy of multiple-access protocols

Random Access

- A station that has data to send uses a procedure defined by the protocol to make a decision on whether or not to send.
- This decision depends on the state of the medium (idle or busy).

Frames in a pure ALOHA network

Frames in a slotted ALOHA network

Space/time model of a collision in CSMA (Part I: model)

Behavior of three persistence methods

Collision of the first bits in CSMA/CD

Collision and abortion in CSMA/CD

Energy level during transmission, idleness, or collision

LINK-LAYER ADDRESSING

Address Resolution Protocol (ARP)

ARP operation

a. ARP request is broadcast

b. ARP reply is unicast

Ethernet frame

Preamble: 56 bits of alternating 1s and 0s **SFD**: Start frame delimiter, flag (10101011)

Minimum payload length: 46 bytes Maximum payload length: 1500 bytes

Preamble	S F D	Destination address	Source address	Туре	Data and padding	CRC
7 bytes	l byte	6 bytes	6 bytes	2 bytes		4 bytes
Physical-la header		Minimum frame length: 512 bits or 64 bytes Maximum frame length: 12,144 bits or 1518 bytes				

Virtual LANs

- A station is considered part of a LAN if it physically belongs to that LAN.
- The criterion of membership is geographic.
- What happens if we need a virtual connection between two stations belonging to two different physical LANs? We can roughly define a virtual local area network (VLAN) as a local area network configured by software, not by physical wiring.

A switch connecting three LANs

switch using VLAN software

Two switches in a backbone using VLAN software

