## Chapter 4

## Network Layer

## 4-1 INTRODUCTION

- Figure 4.1 shows the communication between Alice and Bob at the network layer.
- This is the same scenario we used in Chapters 2 and 3 to show the communication at the application and the transport layers, respectively.


## Figure 4.1: Communication at the network layer



## Network-Layer Services

The network-layer services that, in general, are expected from a network-layer protocol.
$\square$ Packetizing
$\square$ Routing
$\square$ Forwarding

## Figure 4.2: Forwarding process



## Packet Switching

- A kind of switching occurs at the network layer
- A router is a switch that creates a connection between an input port and an output port (or a set of output ports), just as an electrical switch connects the input to the output to let electricity flow.


## - Datagram Approach

# $\square$ Virtual-Circuit Approach 

\author{

* Setup Phase <br> * Data-Transfer Phase <br> * Teardown Phase
}


## Figure 4.3: A connectionless packet-switched network



Figure 4.4: Forwarding process in a router when used in a connectionless network


## Figure 4.5: A virtual-circuit packet-switched network



Legend


A connection-oriented packet-switched network


Figure 4.6: Forwarding process in a router when used in a virtual circuit network


## Figure 4.7: Sending request packet in a virtual-circuit network



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

## Figure 4.8: Sending acknowledgments in a virtual-circuit network



## Figure 4.8: Sending acknowledgments in a virtual-circuit network



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

## Network-Layer Performance

- The upper-layer protocols that use the service of the network layer expect to receive an ideal service, but the network layer is not perfect
- The performance of a network can be measured in terms of delay, throughput, and packet loss.


## $\square$ Delay

# * Transmission Delay <br> * Propagation Delay <br> * Processing Delay <br> Queuing Delay 

$\square$ Throughput
$\square$ Packet Loss

Figure 4.10: Throughput in a path with three links in a series

TR: Transmission rate


## Bottleneck

b. Simulation using pipes

## Figure 4.11: A path through the Internet backbone

TR: Transmission rate


## Figure 4.12: Effect of throughput in shared links

TR: Transmission rate


## Structure of A Router

- accepts incoming packets from one of the input ports (interfaces)
- uses a forwarding table to find the output port from which the packet departs
- sends the packet from this output port.


# $\square$ Components <br> * Input Ports <br> Output Ports <br> Routing Processor <br> Switching Fabrics 

- Crossbar Switch
- Banyan Switch
- Batcher-Banyan Switch

Figure 4.16: Router components


## Figure 4.17: Input port

Input port


## Figure 4.18: Output port

## Output port



Figure 4.19: Crossbar switch


Figure 4.20: Banyan switch


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

## Figure 4.21: Examples of routing in a banyan switch


a. Input 1 sending to output 6 (110)

b. Input 5 sending to output 2 (010)

Figure 4.22: Batcher-banyan switch


Figure 4.23: Position of IP and other network-layer protocols in TCP/IP protocol suite


## Figure 4.24: IP datagram


a. IP datagram

## Legend

VER: version number HLEN: header length byte: 8 bits


| VER <br> 4 bits | HLEN <br> 4 bits | Service type 8 bits |  | Total length 16 bits |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \hline \text { Identification } \\ 16 \text { bits } \\ \hline \end{gathered}$ |  |  | Flags 3 bits | Fragmentation offset 13 bits |
| Time 8 |  | Protocol 8 bits |  | Header checksum 16 bits |
| Source IP address (32 bits) |  |  |  |  |
| Destination IP address ( 32 bits) |  |  |  |  |
| Options + padding ( 0 to 40 bytes) |  |  |  |  |

b. Header format

Figure 4.25: Multiplexing and demultiplexing using the value of the protocol field

```
ICMP: 01 UDP: }1
IGMP: 02 OSPF: 89
TCP: 06
```


## Some protocol values



## Figure 4.26: Maximum transfer unit (MTU)



Figure 4.27: Fragmentation example


## Figure 4.28: Detailed fragmentation example



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 4.29: Three different notations in IPv4 addressing


Figure 4.30: Hierarchy in addressing


Defines network


## Figure 4.31: Occupation of the address space in classful addressing

Address space: 4,294,967,296 addresses


50\%


## B



25\%
$12.5 \%$
6.25\%6.25\%


Class Prefixes First byte


| A | $n=8$ bits | 0 to 127 |
| :--- | :--- | :--- |
| B | $n=16$ bits | 128 to 191 |
| C | $n=24$ bits | 192 to 223 |
| D | Not applicable | 224 to 239 |
| E | Not applicable | 240 to 255 |

Figure 4.33: Slash notation (CIDR)


## Examples: <br> 12.24.76.8/8 <br> 23.14.67.92/12 <br> 220.8.24.255/25

Figure 4.34: Information extraction in classless addressing

## Any address



Number of addresses:

$$
\mathrm{N}=2^{32-n}
$$



## Example 4.1

A classless address is given as 167.199.170.82/27. We can find the above three pieces of information as follows. The number of addresses in the network is $2^{32-} n=2^{5}=32$ addresses. The first address can be found by keeping the first 27 bits and changing the rest of the bits to 0 s.

| Address: $167.199 .170 .82 / 27$ | 10100111 | 11000111 | 10101010 | 01010010 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| First address: $167.199 .170 .64 / 27$ | 10100111 | 11000111 | 10101010 | 01000000 |

The last address can be found by keeping the first 27 bits and changing the rest of the bits to 1 s .

```
Address: 167.199.170.82/27
```

```
10100111 11000111 10101010 01011111
```

10100111 11000111 10101010 01011111
10100111 11000111 10101010 01011111

```
10100111 11000111 10101010 01011111
```


## Example 4.2

We repeat Example 4.1 using the mask. The mask in dotteddecimal notation is 256.256 .256 .224 The AND, OR, and NOT operations can be applied to individual bytes using calculators and applets at the book website.

$$
\begin{array}{ll}
\hline \text { Number of addresses in the block: } & \mathrm{N}=\text { NOT }(\text { mask })+1=0.0 .0 .31+1=32 \text { addresses } \\
\text { First address: } & \text { First }=\text { (address) AND (mask) }=167.199 .170 .82 \\
\text { Last address: } & \text { Last }=\text { (address) OR }(\text { NOT mask })=167.199 .170 .255 \\
\hline
\end{array}
$$

## Figure 4.35: Network address



## Example 4.4

An ISP has requested a block of 1000 addresses. Since 1000 is not a power of 2,1024 addresses are granted. The prefix length is calculated as $n=32-\log _{2} 1024=22$. An available block, $18.14 .12 .0 / 22$, is granted to the ISP. It can be seen that the first address in decimal is $302,910,464$, which is divisible by 1024 .

## Example 4.5

An organization is granted a block of addresses with the beginning address $14.24 .74 .0 / 24$. The organization needs to have 3 subblocks of addresses to use in its three subnets: one subblock of 10 addresses, one subblock of 60 addresses, and one subblock of 120 addresses. Design the subblocks.

## Solution

There are $2^{32-24}=256$ addresses in this block. The first address is $14.24 .74 .0 / 24$; the last address is $14.24 .74 .255 / 24$. To satisfy the third requirement, we assign addresses to subblocks, starting with the largest and ending with the smallest one.

## Example 4.5 (continued)

a. The number of addresses in the largest subblock, which requires 120 addresses, is not a power of 2 . We allocate 128 addresses. The subnet mask for this subnet can be found as $n_{1}=32-\log _{2} 128=25$. The first address in this block is 14.24.74.0/25; the last address is 14.24.74.127/25.
b. The number of addresses in the second largest subblock, which requires 60 addresses, is not a power of 2 either. We allocate 64 addresses. The subnet mask for this subnet can be found as $n_{2}=32-\log _{2} 64=26$. The first address in this block is $14.24 .74 .128 / 26$; the last address is 14.24.74.191/26.

## Example 4.5 (continued)

c. The number of addresses in the largest subblock, which requires 120 addresses, is not a power of 2 . We allocate 128 addresses. The subnet mask for this subnet can be found as $n_{1}=32-\log _{2} 128=25$. The first address in this block is 14.24.74.0/25; the last address is 14.24.74.127/25.

If we add all addresses in the previous subblocks, the result is 208 addresses, which means 48 addresses are left in reserve. The first address in this range is 14.24.74.208. The last address is 14.24 .74 .255 . We don't know about the prefix length yet. Figure 4.36 shows the configuration of blocks. We have shown the first address in each block.

## Figure 4.36: Solution to Example 4.5



## Example 4.6

Figure 4.37 shows how four small blocks of addresses are assigned to four organizations by an ISP. The ISP combines these four blocks into one single block and advertises the larger block to the rest of the world. Any packet destined for this larger block should be sent to this ISP. It is the responsibility of the ISP to forward the packet to the appropriate organization. This is similar to routing we can find in a postal network. All packages coming from outside a country are sent first to the capital and then distributed to the corresponding destination.

Figure 4.37: Example of address aggregation


## Figure 4.38: DHCP message format

$0 \quad 8$

| 16 |  | 24 |
| :---: | :---: | :---: |
| Opcode | Htype | HLen |
| Transaction ID |  |  |
| Time elapsed |  | Flags |
| Client IP address |  |  |
| Your IP address |  |  |
| Server IP address |  |  |
| Gateway IP address |  |  |

## Client hardware address

## Server name

## Boot file name

## Options

## Fields:

Opcode: Operation code, request (1) or reply (2)
Htype: Hardware type (Ethernet, ...)
HLen: Lengh of hardware address
HCount: Maximum number of hops the packet can travel
Transaction ID: An integer set by client and repeated by the server
Time elapsed: The number of seconds since the client started to boot Flags: First bit defines unicast ( 0 ) or multicast (1); other 15 bits not used Client IP address: Set to 0 if the client does not know it
Your IP address: The client IP address sent by the server
Server IP address: A broadcast IP address if client does not know it Gateway IP address: The address of default router
Server name: A 64-byte domain name of the server
Boot file name: A 128-byte file name holding extra information Options: A 64-byte field with dual purpose described in text


## Figure 4.40: Operation of DHCP



Legend
Application
UDP
IP

Note:
Only partial information is given.

Figure 4.56: An internet and its graphical representation

a. An internet

b. The weighted graph

Figure 4.57: Least-cost trees for nodes in the internet of Figure 4.56


## Legend

|  | Root of the tree |
| :--- | :--- |
| Intermediate or end node |  |
| $1,2, \ldots$ | Total cost from the root |



Figure 4.58: Graphical idea behind Bellman-Ford equation

a. General case with three intermediate nodes

b. Updating a path with a new route

Figure 4.59: The distance vector corresponding to a tree

b. Distance vector for node A

Figure 4.60: The first distance vector for an internet

| A 0 | ABCDEFFG | 2 | ABCDEFG | $\infty$ |
| :---: | :---: | :---: | :---: | :---: |
| B 2 |  | 0 |  | 5 |
| C ${ }^{\text {¢ }}$ |  | 5 |  | 0 |
| D 3 |  | $\infty$ |  | $\infty$ |
| E $\quad \infty$ |  | 4 |  | $\infty$ |
| F ${ }_{\sim} \times$ |  | $\infty$ |  | 4 |
| $\mathrm{G} \times$ |  | $\infty$ |  | 3 |



| A | 3 |
| :---: | :---: |
| B | $\infty$ |
| C | $\infty$ |
| D | 0 |
| E | 5 |
| F | $\infty$ |
| G | $\infty$ |


| A | $\infty$ |
| :---: | :---: |
| B | 4 |
| C | $\infty$ |
| D | 5 |
| E | 0 |
| F | 2 |
| G | $\infty$ |


| A | $\infty$ |
| :---: | :---: |
| B | $\infty$ |
| C | 4 |
| D | $\infty$ |
| E | 2 |
| F | 0 |
| G | 1 |

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

## Figure 4.61: Updating distance vectors



## Note: <br> X[ ]: the whole vector

a. First event: B receives a copy of A's vector.

| New B | Old B | E |
| :---: | :---: | :---: |
| A 2 | A 2 | A $\infty$ |
| B 0 | B 0 | B 4 |
| C 5 | C 5 | C $\infty$ |
| D 5 | D 5 | D 5 |
| E 4 | E 4 | E 0 |
| F 6 | F $\quad \infty$ | F 2 |
| $\mathrm{G} \infty$ | $\mathrm{G} \times$ | $\mathrm{G} \times$ |
| B[]$=\min (\mathrm{B}[], 4+\mathrm{E}[])$ |  |  |

b. Second event: B receives a copy of E's vector.

## Figure 4.62: Two-node instability



Figure 4.63: Example of a link-state database

a. The weighted graph

b. Link state database

Figure 4.64: LSPs created and sent out by each node to build LSDB


Figure 4.66: Spanning trees in path-vector routing


Figure 4.69: Internet structure


Figure 4.70: Hop counts in RIP


## Figure 4.71: Forwarding tables

Forwarding table for R1

| Destination <br> network | Next <br> router | Cost in <br> hops |
| :---: | :---: | :---: |
| N1 | - | 1 |
| N2 | - | 1 |
| N3 | R2 | 2 |
| N4 | R2 | 3 |

Forwarding table for R3

| Destination <br> network | Next <br> router | Cost in <br> hops |
| :---: | :---: | :---: |
| N1 | R2 | 3 |
| N2 | R2 | 2 |
| N3 | - | 1 |
| N4 | - | 1 |

## Figure 4.72: RIP message format



Fields
Com: Command, request (1), response (2)
Ver: Version, current version is 2
Family: Family of protocol, for TCP/IP value is 2
Tag: Information about autonomous system
Network address: Destination address
Subnet mask: Prefix length
Next-hop address: Address length
Distance: Number of hops to the destination

## Example 4.15

Figure 4.73 shows a more realistic example of the operation of RIP in an autonomous system. First, the figure shows all forwarding tables after all routers have been booted. Then we show changes in some tables when some update messages have been exchanged. Finally, we show the stabilized forwarding tables when there is no more change.

Figure 4.73: Example of an autonomous system using RIP (Part I)


Legend
Des.: Destination network
N. R.: Next router

Cost: Cost in hops


Forwarding tables after all routers booted

Figure 4.73: Example of an autonomous system using RIP (Part II)


Changes in
the forwarding tables of R1, R3, and R4 after they receive a copy of R2's table

Figure 4.73: Example of an autonomous system using RIP (Part III)


Legend
Des.: Destination network
N. R.: Next router

Cost: Cost in hops

Forwarding tables for all routers
after they have been stablized

| Final R1 |  |  | Final R2 |  |  | Final R3 |  |  | Final R4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Des. | N. R. | Cost |
| N1 | - | 1 | N1 | R1 | 2 | N1 | R2 | 3 | N1 | R2 | 3 |
| N2 | - | 1 | N2 | R1 | 2 | N2 | R2 | 3 | N2 | R2 | 3 |
| N3 | - | 1 | N3 | - | 1 | N3 | R2 | 2 | N3 | R2 | 2 |
| N4 | R2 | 2 | N4 | - | 1 | N4 |  | 1 | N4 | R2 | 2 |
| N5 | R2 | 2 | N5 | - | 1 | N5 | R2 | 2 | N5 | - | 1 |
| N6 | R2 | 3 | N6 | R3 | 2 | N6 |  | 1 | N6 | - | 1 |

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

## Figure 4.74: Metric in OSPF



## Figure 4.75: Forwarding tables in OSPF

Forwarding table for R1

| Destination <br> network | Next <br> router | Cost |
| :---: | :---: | :---: |
| N1 | - |  |
| N2 | - |  |
| N3 | R2 |  |
| N4 | R2 | 12 |



The internet from previous figure

Forwarding table for R2

| Destination <br> network | Next <br> router | Cost |
| :---: | :---: | :---: |
| N1 | R1 | 9 |
| N2 | - | 5 |
| N3 | - | 3 |
| N4 | R3 | 7 |

Forwarding table for R3

| Destination <br> network | Next <br> router | Cost |
| :---: | :---: | :---: |
| N1 | R2 | 12 |
| N2 | R2 | 8 |
| N3 | - | 3 |
| N4 | - | 4 |

Figure 4.76: Areas in an autonomous system

## Autonomous System (AS)



Figure 4.77: Five different LSPs (Part I)

a. Router link

b. Network link

Figure 4.77: Five different LSPs (Part II)

d. Summary link to AS
c. Summary link to network

e. External link

Figure 4.78: OSPF message formats (Part I)

| Version | Type | Message length |
| :---: | :---: | :---: |
| Source router IP address |  |  |
| Area Identification |  |  |
| Checksum |  | Authentication type |
| Authentication |  |  |

Legend
E, T, B, I, M, MS: flags used by OSPF
Priority: used to define the designated router
Rep.: Repeated as required

OSPF common header

## Attention



OSPF common header (Type: 2)


Message sequence number
Link-state general header

## Figure 4.78: OSPF message formats (Part II)

| LS age | E | TS type |
| :--- | :--- | :--- | :---: |
| LS ID |  |  |
| Advertising router |  |  |
| LS sequence number |  |  |
| LS checksum | Length |  |

Legend
E, T, B, I, M, MS: flags used by OSPF Priority: used to define the designated router Rep.: Repeated as required

Link-state general header


OSPF common header (Type: 5)

Link-state general header

Link-state acknowledgment

Figure 4.79: A sample internet with four ASs

Legend


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 4.80: eBGP operation


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 4.81: Combination of eBGP and iBGP sessions in our internet

|  |  |  |
| :---: | :---: | :---: |
| Networks Next |  | AS | |  | N8, N9 | R1 |
| :--- | :--- | :--- |
| AS1, AS2 |  |  |


| Networks |  | Next |  | AS |
| :---: | :---: | :---: | :---: | :---: |
| N13, N14, N15 | R4 | AS1, AS4 |  |  |



(3) | Networks |  | Next |
| :--- | :--- | :--- |
| N10, N11, N12 | R2 | AS1, AS3 |

4

| Networks | Next |  |
| :---: | :---: | :---: |
| N1, N2, N3, N4 | R6 | AS3, AS1 |



Legend


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 4.82: Finalized BGP path tables (Part I)

| Networks | Next Path |  |
| :--- | ---: | :--- |
| N8, N9 | R5 | AS1, AS2 |
| N10, N11, N12 | R2 | AS1, AS3 |
| N13, N14, N15 | R4 | AS1, AS4 |

Path table for R1


Path table for R3

Figure 4.82: Finalized BGP path tables (Part II)

| Networks | Next Path |  |
| :--- | :--- | :--- |
| N1, N2, N3, N4 | R1 | AS2, AS1 |
| N10, N11, N12 | R1 | AS2, AS1, AS3 |
| N13, N14, N15 | R1 | AS2, AS1, AS4 |

Path table for R5

| Networks | Next Path |  |
| :--- | :--- | :--- |
| N8, N9 | R1 | AS1, AS2 |
| N10, N11, N12 | R1 | AS1, AS3 |
| N13, N14, N15 | R9 | AS1, AS4 |

Path table for R4


Figure 4.82: Finalized BGP path tables (Part III)

| Networks | Next Path |  |
| :--- | :--- | :--- | :--- |
| N1, N2, N3, N4 | R4 | AS4, AS1 |
| N8, N9 | R4 | AS4, AS1, AS2 |
| N10, N11, N12 | R4 | AS4, AS1, AS3 |
| Path table for R9 |  |  |



| Networks | Next | Path |
| :--- | :--- | :--- |
| N1, N2, N3, N4 | R6 | AS3, AS1 |
| N8, N9 | R6 | AS3, AS1, AS2 |
| N13, N14, N15 | R6 | AS3, AS1, AS4 |

Path table for R8

| Networks | Next Path |  |
| :--- | :--- | :--- |
| N1, N2, N3, N4 | R6 | AS3, AS1 |
| N8, N9 | R6 | AS3, AS1, AS2 |
| N13, N14, N15 | R6 | AS3, AS1, AS4 |

Path table for R7

Figure 4.83: Forwarding tables after injection from BGP (Part I)

| Des. | Next | Cost |
| :---: | :---: | :---: |
| N1 | - | 1 |
| N4 | R4 | 2 |
| N8 | R5 | 1 |
| N9 | R5 | 1 |
| N10 | R2 | 2 |
| N11 | R2 | 2 |
| N12 | R2 | 2 |
| N13 | R4 | 2 |
| N14 | R4 | 2 |
| N15 | R4 | 2 |

Table for R1

| Des. | Next | Cost |
| :---: | :---: | :---: |
| N1 | - | 1 |
| N4 | R3 | 2 |
| N8 | R1 | 2 |
| N9 | R1 | 2 |
| N10 | R6 | 1 |
| N11 | R6 | 1 |
| N12 | R6 | 1 |
| N13 | R3 | 3 |
| N14 | R3 | 3 |
| N15 | R3 | 3 |

Table for R2

| Des. | Next Cost |  |
| :---: | :---: | :---: |
| N1 | $\mathbf{R 2}$ | 2 |
| N4 | - | 1 |
| N8 | $\mathbf{R 2}$ | 3 |
| N9 | $\mathbf{R 2}$ | 3 |
| N10 | $\mathbf{R 2}$ | 2 |
| N11 | $\mathbf{R 2}$ | 2 |
| N12 | $\mathbf{R 2}$ | 2 |
| N13 | $\mathbf{R} 4$ | 2 |
| N14 | $\mathbf{R} 4$ | 2 |
| N15 | $\mathbf{R} 4$ | 2 |

Table for R3

| Des. | Next | Cost |
| :---: | :---: | :---: |
| N1 | R1 | 2 |
| N4 | - | 1 |
| N8 | R1 | 2 |
| N9 | R1 | 2 |
| N10 | R3 | 3 |
| N11 | R3 | 3 |
| N12 | R3 | 3 |
| N13 | R9 | 1 |
| N14 | R9 | 1 |
| N15 | R9 | 1 |

Table for R4


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 4.83: Forwarding tables after injection from BGP (Part II)

| Des. | Next | Cost |
| :---: | :---: | :---: |
| N8 | - | 1 |
| N9 | - | 1 |
| 0 | R1 | 1 |

Table for R5

| Des. | Next |  |
| :---: | :--- | :---: |
| N10 - <br> N11 - <br> N12 $\mathbf{R} 7$ <br> 0 $\mathbf{R 2}$ <br>  1 |  |  |

Table for R6
Des. Next Cost

| N10 | R6 | 2 |
| :---: | :---: | :---: |
| N11 | - | 1 |
| N12 | - | 1 |
| 0 | R6 | 2 |

Table for R8
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

## Figure 4.84: Format of path attribute

O: Optional bit (set if attribute is optional)
P: Partial bit (set if an optional attribute in lost in transit)
T: Transitive bit (set if attribute is transitive)
E: Extended bit (set if attribute length is two bytes)

| 10 |  |  |  |  | \|8 | \|16 | \|24 | 31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O | T | P | E | All 0s | Attribute type | Attribute value length |  |  |
| Attribute value (variable length) |  |  |  |  |  |  |  |  |

## Figure 4.85: Flow diagram for route selection



## Figure 4.86: BGP messages




Notification message (type 3)


Update message (type 2)


Keepalive message (type 4)
Fields in common header
Marker: Reserved for authentication
Length: Length of total message in bytes
Type: Type of message (1 to 4)
Abbreviations
O len: Option length
EC: Error code
ES: Error subcode
UR len: Unfeasible route length
PA len: Path attribute length

