

Network Layer

4-1 INTRODUCTION

- Figure 4.1 shows the communication between Alice and Bob at the network layer.
- This is the same scenario we used in Chapters 2 and 3 to show the communication at the application and the transport layers, respectively.

Figure 4.1: Communication at the network layer

Network-Layer Services

The network-layer services that, in general, are expected from a network-layer protocol.

Packetizing

Routing

Gamma Forwarding

Figure 4.2: Forwarding process

Packet Switching

- A kind of switching occurs at the network layer
- A router is a switch that creates a connection between an input port and an output port (or a set of output ports), just as an electrical switch connects the input to the output to let electricity flow.

Datagram Approach

Virtual-Circuit Approach

- * Setup Phase
- * Data-Transfer Phase
- Teardown Phase

Figure 4.3: A connectionless packet-switched network

Figure 4.4: Forwarding process in a router when used in a connectionless network

Forwarding table

Figure 4.5: A virtual-circuit packet-switched network

Figure 4.6: Forwarding process in a router when used in a virtual circuit network

Figure 4.7: Sending request packet in a virtual-circuit network

Figure 4.8: Sending acknowledgments in a virtual-circuit network

Figure 4.8: Sending acknowledgments in a virtual-circuit network

Network-Layer Performance

- The upper-layer protocols that use the service of the network layer expect to receive an ideal service, but the network layer is not perfect
- The performance of a network can be measured in terms of delay, throughput, and packet loss.

Delay

- * Transmission Delay
- * Propagation Delay
- * Processing Delay
- * Queuing Delay

Throughput

Packet Loss

Figure 4.10: Throughput in a path with three links in a series

TR: Transmission rate

b. Simulation using pipes

Figure 4.11: A path through the Internet backbone

Figure 4.12: Effect of throughput in shared links

Structure of A Router

- accepts incoming packets from one of the input ports (interfaces)
- uses a forwarding table to find the output port from which the packet departs
- sends the packet from this output port.

Components

- Input Ports
- * Output Ports
- * Routing Processor
- * Switching Fabrics
 - Crossbar Switch
 - Banyan Switch
 - Batcher-Banyan Switch

Figure 4.16: Router components

Figure 4.18: Output port

Figure 4.19: Crossbar switch

Figure 4.20: Banyan switch

Figure 4.21: Examples of routing in a banyan switch

a. Input 1 sending to output 6 (110)

Figure 4.22: Batcher-banyan switch

Figure 4.23: Position of IP and other network-layer protocols in TCP/IP protocol suite

Figure 4.24: IP datagram

b. Header format

Figure 4.25: Multiplexing and demultiplexing using the value of the protocol field

Some protocol values

Figure 4.26: Maximum transfer unit (MTU)

Figure 4.27: Fragmentation example

Figure 4.28: Detailed fragmentation example

Figure 4.29: Three different notations in IPv4 addressing

Figure 4.30: Hierarchy in addressing

Figure 4.31: Occupation of the address space in classful addressing

Figure 4.33: Slash notation (CIDR)

Examples: 12.24.76.8/8 23.14.67.92/12 220.8.24.255/25

Figure 4.34: Information extraction in classless addressing

Any address

A classless address is given as 167.199.170.82/27. We can find the above three pieces of information as follows. The number of addresses in the network is $2^{32-n} = 2^5 = 32$ addresses. The first address can be found by keeping the first 27 bits and changing the rest of the bits to 0s.

Address: 167.199.170.82/27	10100111	11000111	10101010	01010010
First address: 167.199.170.64/27	10100111	11000111	10101010	0100000

The last address can be found by keeping the first 27 bits and changing the rest of the bits to 1s.

Address: 167.199.170.82/27	10100111	11000111	10101010	01011111
Last address: 167.199.170.95/27	10100111	11000111	10101010	01011111

We repeat Example 4.1 using the mask. The mask in dotteddecimal notation is 256.256.256.224 The AND, OR, and NOT operations can be applied to individual bytes using calculators and applets at the book website.

Number of addresses in the block:	N = NOT (mask) + 1 = 0.0.0.31 + 1 = 32 addresses
First address:	First = (address) AND (mask) = 167.199.170. 82
Last address:	Last = (address) OR (NOT mask) = 167.199.170. 255

Figure 4.35: Network address

Example 4.4

An ISP has requested a block of 1000 addresses. Since 1000 is not a power of 2, 1024 addresses are granted. The prefix length is calculated as $n = 32 - \log_2 1024 = 22$. An available block, 18.14.12.0/22, is granted to the ISP. It can be seen that the first address in decimal is 302,910,464, which is divisible by 1024.

An organization is granted a block of addresses with the beginning address 14.24.74.0/24. The organization needs to have 3 subblocks of addresses to use in its three subnets: one subblock of 10 addresses, one subblock of 60 addresses, and one subblock of 120 addresses. Design the subblocks.

Solution

There are $2^{32-24} = 256$ addresses in this block. The first address is 14.24.74.0/24; the last address is 14.24.74.255/24. To satisfy the third requirement, we assign addresses to subblocks, starting with the largest and ending with the smallest one.

Example 4.5 (continued)

a. The number of addresses in the largest subblock, which requires 120 addresses, is not a power of 2. We allocate 128 addresses. The subnet mask for this subnet can be found as $n_1 = 32 - \log_2 128 = 25$. The first address in this block is 14.24.74.0/25; the last address is 14.24.74.127/25.

b. The number of addresses in the second largest subblock, which requires 60 addresses, is not a power of 2 either. We allocate 64 addresses. The subnet mask for this subnet can be found as $n_2 = 32 - \log_2 64 = 26$. The first address in this block is 14.24.74.128/26; the last address is 14.24.74.191/26.

Example 4.5 (continued)

c. The number of addresses in the largest subblock, which requires 120 addresses, is not a power of 2. We allocate 128 addresses. The subnet mask for this subnet can be found as $n_1 = 32 - \log_2 128 = 25$. The first address in this block is 14.24.74.0/25; the last address is 14.24.74.127/25.

If we add all addresses in the previous subblocks, the result is 208 addresses, which means 48 addresses are left in reserve. The first address in this range is 14.24.74.208. The last address is 14.24.74.255. We don't know about the prefix length yet. Figure 4.36 shows the configuration of blocks. We have shown the first address in each block.

Figure 4.36: Solution to Example 4.5

Example 4.6

Figure 4.37 shows how four small blocks of addresses are assigned to four organizations by an ISP. The ISP combines these four blocks into one single block and advertises the larger block to the rest of the world. Any packet destined for this larger block should be sent to this ISP. It is the responsibility of the ISP to forward the packet to the appropriate organization. This is similar to routing we can find in a postal network. All packages coming from outside a country are sent first to the capital and then distributed to the corresponding destination.

Figure 4.37: Example of address aggregation

Figure 4.38: DHCP message format

8 16 0 24 31 HCount Htype HLen Opcode Transaction ID Time elapsed Flags Client IP address Your IP address Server IP address Gateway IP address Client hardware address Server name Boot file name Options

Fields:

Opcode: Operation code, request (1) or reply (2) Htype: Hardware type (Ethernet, ...) HLen: Lengh of hardware address HCount: Maximum number of hops the packet can travel Transaction ID: An integer set by client and repeated by the server Time elapsed: The number of seconds since the client started to boot Flags: First bit defines unicast (0) or multicast (1); other 15 bits not used Client IP address: Set to 0 if the client does not know it Your IP address: The client IP address sent by the server Server IP address: The address of default router Server name: A 64-byte domain name of the server Boot file name: A 128-byte file name holding extra information Options: A 64-byte field with dual purpose described in text Figure 4.39: Option format

Figure 4.40: Operation of DHCP

Figure 4.56: An internet and its graphical representation

b. The weighted graph Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 4.57: Least-cost trees for nodes in the internet of Figure 4.56

Legend

Root of the tree Intermediate or end node Total cost from the root

Figure 4.58: Graphical idea behind Bellman-Ford equation

a. General case with three intermediate nodes

b. Updating a path with a new route

Figure 4.59: The distance vector corresponding to a tree

b. Distance vector for node A

Figure 4.60: The first distance vector for an internet

Figure 4.61: Updating distance vectors

a. First event: B receives a copy of A's vector.

Note: X[]: the whole vector

b. Second event: B receives a copy of E's vector.

Figure 4.62: Two-node instability

Figure 4.63: Example of a link-state database

a. The weighted graph

	Α	В	С	D	E	F	G
A	0	2	8	3	8	8	8
B	2	0	5	8	4	8	8
C	8	5	0	8	8	4	3
D	3	8	8	0	5	8	8
E	8	4	8	5	0	2	∞
F	8	8	4	8	2	0	1
G	8	8	3	8	8	1	0

b. Link state database

Figure 4.64: LSPs created and sent out by each node to build LSDB

Figure 4.66: Spanning trees in path-vector routing

Figure 4.69: Internet structure

Figure 4.70: Hop counts in RIP

Figure 4.71: Forwarding tables

Forwarding	table	for	R1
------------	-------	-----	----

Destination	Next	Cost in
network	router	hops
N1		1
N2		1
N3	R2	2
N4	R2	3

Forwarding table for R3

Destination	Next	Cost in
network	router	hops
N1	R2	3
N2	R2	2
N3		1
N4		1

Forwarding table for R2

Destination	Next	Cost in
network	router	hops
N1	R 1	2
N2		1
N3		1
N4	R3	2

Figure 4.72: RIP message format

Fields

Com: Command, request (1), response (2) Ver: Version, current version is 2 Family: Family of protocol, for TCP/IP value is 2 Tag: Information about autonomous system Network address: Destination address Subnet mask: Prefix length Next-hop address: Address length Distance: Number of hops to the destination

Example 4.15

Figure 4.73 shows a more realistic example of the operation of RIP in an autonomous system. First, the figure shows all forwarding tables after all routers have been booted. Then we show changes in some tables when some update messages have been exchanged. Finally, we show the stabilized forwarding tables when there is no more change.

Figure 4.73: Example of an autonomous system using RIP (Part I)

Forwarding tables after all routers booted

Figure 4.73: Example of an autonomous system using RIP (Part II)

Changes in the forwarding tables of R1, R3, and R4 after they receive a copy of R2's table

Figure 4.73: Example of an autonomous system using RIP (Part III)

Forwarding tables for all routers after they have been stablized

	Final R	1		Final R	2			Final R	3		Final R4	4	
Des.	N. R.	Cost	Des.	N. R.	Cost		Des.	N. R.	Cost	Des.	N. R.	Cost	
N1		1	N1	R1	2	1	N1	R2	3	N1	R2	3	
N2		1	N2	R1	2		N2	R2	3	N2	R2	3	
N3		1	N3		1		N3	R2	2	N3	R2	2	
N4	R2	2	N4		1		N4		1	N4	R2	2	
N5	R2	2	N5		1		N5	R2	2	N5		1	
N6	R2	3	N6	R3	2		N6		1	N6		1	

Figure 4.74: Metric in OSPF

Figure 4.75: Forwarding tables in OSPF

Destination Next Cost				
network	router			
N1				
N2				
N3	R2			
N4	R2	12		

cost: 4 cost: 5 cost: 3 cost: 4

The internet from previous figure

Destination network	Next router	Cost
N1	R1	9
N2		5
N3		3
N4	R3	7

Forwarding table for P?

Forwarding table for R3

Destination	Next	Cost
network	router	
N1	R2	12
N2	R2	8
N3		3
N4		4
Figure 4.76: Areas in an autonomous system

Autonomous System (AS)

Figure 4.77: Five different LSPs (Part I)

Figure 4.77: Five different LSPs (Part II)

c. Summary link to network

Figure 4.78: OSPF message formats (Part I)

0		8	16	31	Legend		
Ver	rsion	Туре	Message length		E T B I M MS: flags used by OSPE		
		Source rout	er IP address		Priority: used to define the designated router		
	<u>C1</u>	Area Idei			Rep.: Repeated as required		
Checksum Authentication type			Authentication type				
Authentication							
		OSPF comm	non header				
					OSPF common header (Type: 1)		
					Network mask		
				Hello intervalETPriority			
				Dead interval			
				Designated router IP address Backup designated router IP address			
							Attention> 2
	C	SPF common	header (Type: 2)				
			EBI	M_S^M			
		Message seq	uence number				
		Link-state g	eneral header				
		Database o	lescription		mpanies, Inc. Permission required for reproduction or display.		

4.76

Figure 4.78: OSPF message formats (Part II)

Link-state acknowledgment

Figure 4.79: A sample internet with four ASs

Figure 4.80: eBGP operation

Figure 4.81: Combination of eBGP and iBGP sessions in our internet

Figure 4.82: Finalized BGP path tables (Part I)

Path table for R2

Figure 4.82: Finalized BGP path tables (Part II)

Networks	Next	Path
N1, N2, N3, N4	R1	AS2, AS1
N10, N11, N12	R1	AS2, AS1, AS3
N13, N14, N15	R1	AS2, AS1, AS4

Path table for R5

Networks	Next	Path
N8, N9	R1	AS1, AS2
N10, N11, N12	R1	AS1, AS3
N13, N14, N15	R9	AS1, AS4

Path table for R4

Figure 4.82: Finalized BGP path tables (Part III)

Path table for R7

Figure 4.83: Forwarding tables after injection from BGP (Part I)

Figure 4.83: Forwarding tables after injection from BGP (Part II)

Figure 4.84: Format of path attribute

O: Optional bit (set if attribute is optional)

P: Partial bit (set if an optional attribute in lost in transit)

T: Transitive bit (set if attribute is transitive)

E: Extended bit (set if attribute length is two bytes)

0					8	16	24 3		
0	Т	Р	E	All 0s	Attribute type	Attribute value length			
	Attribute value (variable length)								

Figure 4.85: Flow diagram for route selection

Figure 4.86: BGP messages

0		8	16	24	31			
Marker								
(16 bytes)								
	Length Type Version							
My	autonor	nous system	Hold time					
	lan	BGP 10	entifier					
0	len	Opt	tion					
		(Variable	e length)					
Open message (type 1)								
0								
<u> </u>		Mo	rleon	2 4	- 31			
		(16 h	vtes)					
	Lei	ngth	Type	UR len				
UR	R len		J T -	_				
		Withdray	vn routes					
		(Variable	e length)					
PA len								
Path attributes								
(Variable length)								
Network-layer reachability information (Variable length)								

Update message (type 2)

Marker: Reserved for authentication Length: Length of total message in bytes Type: Type of message (1 to 4)

Abbreviations

O len: Option length EC: Error code ES: Error subcode UR len: Unfeasible route length PA len: Path attribute length