Interplay between routing, forwarding

routing algorithm determines end-end-path through network

forwarding table determines local forwarding at this router

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

notation:

- **\star** C(X,Y): link cost from node x to y; = ∞ if not direct neighbors
- D(V): current value of cost of path from source to dest. v
- p(V): predecessor node along path from source to
- N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

```
Initialization:
   N' = \{u\}
3 for all nodes v
     if v adjacent to u
       then D(v) = c(u,v)
6
     else D(v) = \infty
   Loop
    find w not in N' such that D(w) is a minimum
10 add w to N'
    update D(v) for all v adjacent to w and not in N':
12
      D(v) = \min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Dijkstra's algorithm: example

		$D(\mathbf{v})$	$D(\mathbf{w})$	$D(\mathbf{x})$	D(y)	D(z)
Step) N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	(3,u)	5,u	∞	∞
1	uw	6,w		5,u) 11,W	∞
2	uwx	6,w			11,W	14,x
3	uwxv				10,V	14,x
4	uwxvy					12,y
5	uwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: another example

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy <mark>←</mark>	2, u	3,y			4,y
3	uxyv 🗸		3,y			4,y
4	uxyvw ←					4,y
5	uxyvwz 🗲					

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:

resulting forwarding table in u:

destination	link		
V	(u,v)		
X	(u,x)		
У	(u,x)		
W	(u,x)		
Z	(u,x)		

Bellman-Ford equation (dynamic programming)

```
let
  d_{y}(y) := cost of least-cost path from x to y
then
  d_{x}(y) = \min \{c(x,v) + d_{v}(y)\}
                             cost from neighbor v to destination y
                    cost to neighbor v
            min taken over all neighbors v of x
```

Bellman-Ford example

clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

node achieving minimum is next hop in shortest path, used in forwarding table

- $D_x(y) = estimate of least cost from x to y$
 - x maintains distance vector $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbb{N}]$
- node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors. For each neighbor v, x maintains

$$\mathbf{D}_{\mathsf{v}} = [\mathsf{D}_{\mathsf{v}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]$$

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\}$$
 for each node $y \in N$

* under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

each node:

node x

time

