

Digital Transmission

DIGITAL-TO-DIGITAL CONVERSION

Data

- Digital
- Analog
- Signals
 - Digital
 - Analog

Line Coding

- The process of converting a sequence of bits to digital signals.
- At the sender, digital data are encoded into a digital signal
- at the receiver, the digital data are recreated by decoding the digital signal.

Line coding and decoding

Signal elements versus data elements

a. One data element per one signal element (r = 1)

c. Two data elements per one signal element (r = 2)

A signal is carrying data in which one data element is encoded as one signal element (r = 1). If the bit rate is 100 kbps, what is the average value of the baud rate if c is between 0 and 1?

Solution

We assume that the average value of c is 1/2. The baud rate is then

 $S = c \times N \times (1 / r) = 1/2 \times 100,000 \times (1/1) = 50,000 = 50$ kbaud

The maximum data rate of a channel is $N_{max} = 2 \times B \times \log 2 L$ (defined by the Nyquist formula). Does this agree with the previous formula for N_{max} ?

Solution

A signal with L levels actually can carry log2 L bits per level. If each level corresponds to one signal element and we assume the average case (c = 1/2), then we have

$$N_{\text{max}} = (1/c) \times B \times r = 2 \times B \times \log_2 L$$

In a digital transmission, the receiver clock is 0.1 percent faster than the sender clock. How many extra bits per second does the receiver receive if the data rate is 1 kbps? How many if the data rate is 1 Mbps?

Solution

At 1 kbps, the receiver receives 1001 bps instead of 1000 bps.

	1000 bits	sent	\rightarrow	1001 b	oits rece	ived	\rightarrow	1 exti	ra bps	
At 1,0	1 Mbps, 00,000 bp	the ps.	receive	er rec	eives	1,00	1,000	bps	instead	of

1,000,000 bits sent \rightarrow 1,001,000 bits received \rightarrow 1000 extra bps

Effect of lack of synchronization

Line coding scheme

Unipolar scheme

Polar schemes (NRZ-L and NRZ-I)

A system is using NRZ-I to transfer 10-Mbps data. What are the average signal rate and minimum bandwidth?

Solution

The average signal rate is S = N/2 = 500 kbaud. The minimum bandwidth for this average baud rate is $B_{min} = S = 500$ kHz.

Polar schemes (RZ)

Polar biphase

• No inversion: Next bit is 1 • Inversion: Next bit is 0

Polar schemes: AMI and pseudoternary

Multilevel: 2B1Q

Multilevel: 8B6T

Multi-transition MLT-3 scheme

ANALOG-TO-DIGITAL CONVERSION

- to change an analog signal to digital data

Pulse Code Modulation (PCM)

The most common technique to change an analog signal to digital data (digitization)

Components of PCM encoder

Three different sampling methods for PCM

Recovery of a sine wave with different sampling rates.

Telephone companies digitize voice by assuming a maximum frequency of 4000 Hz. The sampling rate therefore is 8000 samples per second.

Quantization and encoding of a sampled signal

We want to digitize the human voice. What is the bit rate, assuming 8 bits per sample?

Solution

The human voice normally contains frequencies from 0 to 4000 Hz. So the sampling rate and bit rate are calculated as follows:

Sampling rate = $4000 \times 2 = 8000$ samples/s Bit rate = $8000 \times 8 = 64,000$ bps = 64 kbps

TRANSMISSION MODES

The transmission of binary data across a link can be accomplished in either parallel or serial mode.

Data transmission modes

Parallel transmission

Serial transmission

Asynchronous transmission

Synchronous transmission

