Chapter 13

Wired LANs: Ethernet
IEEE Project 802

- In 1985, the IEEE started a project, called Project 802, to set standards to enable intercommunication among equipment from a variety of manufacturers.

- It is a way of specifying functions of the physical layer and the data-link layer of major LAN protocols.
IEEE standard for LANs

LLC: Logical link control

MAC: Media access control

<table>
<thead>
<tr>
<th>LLC</th>
<th>Ethernet MAC</th>
<th>Token ring MAC</th>
<th>Token bus MAC</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethertnet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>physical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAC</th>
<th>Ethernet MAC</th>
<th>Token ring MAC</th>
<th>Token bus MAC</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>physical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ethernet Evolution

- The Ethernet LAN was developed in the 1970s.

- Since then, it has gone through four generations:
 Standard Ethernet (10 Mbps)
 Fast Ethernet (100 Mbps)
 Gigabit Ethernet (1 Gbps, 10 Gbps)
Ethernet frame

Preamble: 56 bits of alternating 1s and 0s

SFD: Start frame delimiter, flag (10101011)

Minimum payload length: 46 bytes
Maximum payload length: 1500 bytes

<table>
<thead>
<tr>
<th>Preamble</th>
<th>SFD</th>
<th>Destination address</th>
<th>Source address</th>
<th>Type</th>
<th>Data and padding</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 bytes</td>
<td>1 byte</td>
<td>6 bytes</td>
<td>6 bytes</td>
<td>2 bytes</td>
<td>4 bytes</td>
<td></td>
</tr>
</tbody>
</table>

13.5
Show how the address 47:20:1B:2E:08:EE is sent out online.

Solution

The address is sent left to right, byte by byte; for each byte, it is sent right to left, bit by bit, as shown below:

<table>
<thead>
<tr>
<th>Hexadecimal</th>
<th>47</th>
<th>20</th>
<th>1B</th>
<th>2E</th>
<th>08</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binaries</td>
<td>01000111</td>
<td>00100000</td>
<td>00011011</td>
<td>00101110</td>
<td>00001000</td>
<td>11101110</td>
</tr>
<tr>
<td>Transmitted</td>
<td>← 11100010</td>
<td>00000100</td>
<td>11011000</td>
<td>01110100</td>
<td>00010000</td>
<td>01110111</td>
</tr>
</tbody>
</table>
Addressing

- Each station on an Ethernet network (such as a PC, workstation, or printer) has its own network interface card (NIC).
- The NIC fits inside the station and provides the station with a link-layer address.
- The Ethernet address is 6 bytes (48 bits), normally written in hexadecimal notation, with a colon between the bytes. For example, the following shows an Ethernet MAC address:

 4A:30:10:21:10:1A
Unicast and multicast addresses

unicast: 0 multicast: 1

Byte 1 Byte 2 ... Byte 6
Define the type of the following destination addresses:

a. 4A:30:10:21:10:1A
b. 47:20:1B:2E:08:EE
c. FF:FF:FF:FF:FF:FF

Solution

To find the type of the address, we need to look at the second hexadecimal digit from the left. If it is even, the address is unicast. If it is odd, the address is multicast. If all digits are Fs, the address is broadcast.
a. This is a unicast address because A in binary is 1010 (even).

b. This is a multicast address because 7 in binary is 0111 (odd).

c. This is a broadcast address because all digits are Fs in hexadecimal.
Implementation of standard Ethernet

a. A LAN with a bus topology using a coaxial cable

b. A LAN with a star topology using a hub
Access Method

- Since the network that uses the standard Ethernet protocol is a broadcast network.

- We need to use an access method to control access to the sharing medium.

- The standard Ethernet chose CSMA/CD with 1-persistent method,
Summary of Standard Ethernet implementations

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Medium</th>
<th>Medium Length</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Base5</td>
<td>Thick coax</td>
<td>500 m</td>
<td>Manchester</td>
</tr>
<tr>
<td>10Base2</td>
<td>Thin coax</td>
<td>185 m</td>
<td>Manchester</td>
</tr>
<tr>
<td>10Base-T</td>
<td>2 UTP</td>
<td>100 m</td>
<td>Manchester</td>
</tr>
<tr>
<td>10Base-F</td>
<td>2 Fiber</td>
<td>2000</td>
<td>Manchester</td>
</tr>
</tbody>
</table>
Encoding in a Standard Ethernet

- 10 Mbps data
 - Manchester encoder
 - Station

- 10 Mbps data
 - Manchester decoder
 - Media
10Base5 implementation

10 Mbps

500 m

Baseband
digital

Transceiver cable maximum 50 m

Thick coaxial cable maximum 500 m
10Base2 implementation

10Base2

10 Mbps

185 m

Baseband (digital)

Thin coaxial cable, maximum 185 m

Cable end

Cable end
10Base-T implementation

10Base-T

10 Mbps
Twisted pair
Baseband (digital)

Two pairs of UTP cable

10Base-T hub
10Base-F implementation

10 Base-F

10 Mbps

Fiber

Baseband (digital)

10Base-F hub

Two fiber-optic cables
Changes in the Standard

Before we discuss higher-rate Ethernet protocols, we need to discuss the changes that occurred to the 10-Mbps Standard Ethernet. These changes actually opened the road to the evolution of the Ethernet to become compatible with other high-data-rate LANs.
Sharing bandwidth

a. First station

b. Second station
A network with and without bridging

a. Without bridging

b. With bridging
Collision domains

a. Without bridging

b. With bridging
Switched Ethernet
Full – duplex switched Ethernet
FAST ETHERNET

- In the 1990s, Ethernet made a big jump by increasing the transmission rate to 100 Mbps, and the new generation was called the Fast Ethernet.

- The designers of the Fast Ethernet needed to make it compatible with the Standard Ethernet.

- The MAC sublayer was left unchanged. But the features of the Standard Ethernet that depend on the transmission rate, had to be changed.
Access Method

- The proper operation of the CSMA/CD depends on the transmission rate, the minimum size of the frame, and the maximum network length.

- If we want to keep the minimum size of the frame, the maximum length of the network should be changed.

- In other words, if the minimum frame size is still 512 bits, and it is transmitted 10 times faster, the collision needs to be detected 10 times sooner, which means the maximum length of the network should be 10 times shorter (the propagation speed does not change).
Physical Layer

To be able to handle a 100 Mbps data rate, several changes need to be made at the physical layer.
Encoding for fast Ethernet

100Base-TX
- 4 × 25 Mbps
- 125 Mbps
- 4B/5B encoder
- MLT-3 encoder
- Station
- Two UTP category 5

100Base-FX
- 4 × 25 Mbps
- 125 Mbps
- 4B/5B encoder
- NRZ-I encoder
- Station
- Two fibers

100Base-T4
- 100 Mbps
- 8B/6T encoder
- 4 category 3 UTP

13.28
Summary of Fast Ethernet implementations

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Medium</th>
<th>Medium Length</th>
<th>Wires</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>100Base-TX</td>
<td>STP</td>
<td>100 m</td>
<td>2</td>
<td>4B5B + MLT-3</td>
</tr>
<tr>
<td>100Base-FX</td>
<td>Fiber</td>
<td>185 m</td>
<td>2</td>
<td>4B5B + NRZ-I</td>
</tr>
<tr>
<td>100Base-T4</td>
<td>UTP</td>
<td>100 m</td>
<td>4</td>
<td>Two 8B/6T</td>
</tr>
</tbody>
</table>
GIGABIT ETHERNET

- The need for an even higher data rate resulted in the design of the Gigabit Ethernet Protocol (1000 Mbps).
- The IEEE committee calls it the Standard 802.3z.
- The goals of the Gigabit Ethernet were to upgrade the data rate to 1 Gbps, but keep the address length, the frame format, and the maximum and minimum frame length the same.
MAC Sublayer

- A main consideration in the evolution of Ethernet was to keep the MAC sublayer untouched.
- However, to achieve a data rate of 1 Gbps, this was no longer possible.
- Gigabit Ethernet has two distinctive approaches for medium access: half-duplex and full-duplex. Almost all implementations of Gigabit Ethernet follow the full-duplex approach, so we mostly ignore the half-duplex mode.
Physical Layer

The physical layer in Gigabit Ethernet is more complicated than that in Standard or Fast Ethernet.
Encoding in Gigabit Ethernet

1000Base-SX, 1000Base-LX, and 1000Base-CX

1000Base-T
Summary of Gigabit Ethernet implementations

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Medium</th>
<th>Medium Length</th>
<th>Wires</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000Base-SX</td>
<td>Fiber S-W</td>
<td>550 m</td>
<td>2</td>
<td>8B/10B + NRZ</td>
</tr>
<tr>
<td>1000Base-LX</td>
<td>Fiber L-W</td>
<td>5000 m</td>
<td>2</td>
<td>8B/10B + NRZ</td>
</tr>
<tr>
<td>1000Base-CX</td>
<td>STP</td>
<td>25 m</td>
<td>2</td>
<td>8B/10B + NRZ</td>
</tr>
<tr>
<td>1000Base-T4</td>
<td>UTP</td>
<td>100 m</td>
<td>4</td>
<td>4D-PAM5</td>
</tr>
</tbody>
</table>
10-GIGABIT ETHERNET

- The Ethernet for use in metropolitan areas.
- The idea is to extend the technology, the data rate, and the coverage distance so that the Ethernet can be used as LAN and MAN (metropolitan area network).
- The IEEE committee created 10 Gigabit Ethernet and called it Standard 802.3ae.
Implementation

- 10 Gigabit Ethernet operates only in full-duplex mode, which means there is no need for contention;

- CSMA/CD is not used in 10 Gigabit Ethernet.

- Four implementations are the most common: 10GBase-SR, 10GBase-LR, 10GBase-EW, and 10GBase-X4.
Summary of 10-Gigabit Ethernet Implementations

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Medium</th>
<th>Medium Length</th>
<th>Number of wires</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>10GBase-SR</td>
<td>Fiber 850 nm</td>
<td>300 m</td>
<td>2</td>
<td>64B66B</td>
</tr>
<tr>
<td>10GBase-LR</td>
<td>Fiber 1310 nm</td>
<td>10 Km</td>
<td>2</td>
<td>64B66B</td>
</tr>
<tr>
<td>10GBase-EW</td>
<td>Fiber 1350 nm</td>
<td>40 Km</td>
<td>2</td>
<td>SONET</td>
</tr>
<tr>
<td>10GBase-X4</td>
<td>Fiber 1310 nm</td>
<td>300 m to 10 Km</td>
<td>2</td>
<td>8B10B</td>
</tr>
</tbody>
</table>