

Media Access Control (MAC)

Taxonomy of multiple-access protocols

RANDOM ACCESS

- or contention
- at each instance, a station that has data to send uses a procedure defined by the protocol to make a decision on whether or not to send.
- this decision depends on the state of the medium (idle or busy).

ALOHA

- the earliest random access method
- was developed at the University of Hawaii in early 1970.
- It was designed for a radio (wireless) LAN, but it can be used on any shared medium.
- It is obvious that there are potential collisions in this arrangement.
- The medium is shared between the stations. When a station sends data, another station may attempt to do so at the same time.
- The data from the two stations collide and become garbled.

Frames in a pure ALOHA network

Frames in a slotted ALOHA network

- The chance of collision can be reduced if a station senses the medium before trying to use it.
- Carrier sense multiple access (CSMA) requires that each station first listen to the medium (or check the state of the medium) before sending.
- In other words, CSMA is based on the principle "sense before transmit" or "listen before talk."

Space/time model of a collision in CSMA

Behavior of three persistence methods

- a station monitors the medium after it sends a frame to see if the transmission was successful.
- If so, the station is finished. If, however, there is a collision, the frame is sent again.

Collision of the first bits in CSMA/CD

Collision and abortion in CSMA/CD

Energy level during transmission, idleness, or collision

CSMA/CA

- was invented for wireless networks.
- Collisions are avoided through the use of CSMA/CA's three strategies:
 - the interframe space
 - the contention window
 - acknowledgments

Contention window

CMACA and **NAV**

CONTROLLED ACCESS

- the stations consult one another to find which station has the right to send.
- a station cannot send unless it has been authorized by other stations.
- three controlled-access methods.

Reservation

- a station needs to make a reservation before sending data.
- Time is divided into intervals.
- In each interval, a reservation frame precedes the data frames sent in that interval.

Reservation access method

Polling

- Polling works with topologies in which one device is designated as a primary station and the other devices are secondary stations.
- All data exchanges must be made through the primary device even when the ultimate destination is a secondary device.
- The primary device controls the link; the secondary devices follow its instructions.
- It is up to the primary device to determine which device is allowed to use the channel at a given time.

Select and poll functions in polling-access method

Select

Poll

Token Passing

- the stations in a network are organized in a logical ring.
- In other words, for each station, there is a predecessor and a successor
- The predecessor is the station which is logically before the station in the ring; the successor is the station which is after the station in the ring.

Logical ring and physical topology in tokenpassing access method

a. Physical ring

b. Dual ring

c. Bus ring

CHANNELIZATION

- Channelization (or channel partition, as it is sometimes called) is a multiple-access method in which the available bandwidth of a link is shared in time, frequency, or through code, among different stations.
- three protocols: FDMA, TDMA, and CDMA.

FDMA

- the available bandwidth is divided into frequency bands
- Each station is allocated a band to send its data.
 In other words, each band is reserved for a specific station, and it belongs to the station all the time

Frequency-division multiple access (FDMA)

TDMA

- the stations share the bandwidth of the channel in time
- Each station is allocated a time slot during which it can send data
- Each station transmits its data in its assigned time slot

Time-division multiple access (TDMA)

CDMA

- CDMA differs from FDMA in that only one channel occupies the entire bandwidth of the link
- It differs from TDMA in that all stations can send data simultaneously; there is no timesharing

Simple idea of communication with code

