Chapter 12

Media Access Control (MAC)
Taxonomy of multiple-access protocols

Multiple-access protocols

- Random-access protocols
 - ALOHA
 - CSMA/CD
 - CSMA/CA

- Controlled-access protocols
 - Reservation
 - Polling
 - Token passing

- Channelization protocols
 - FDMA
 - TDMA
 - CDMA
RANDOM ACCESS

- or contention

- at each instance, a station that has data to send uses a procedure defined by the protocol to make a decision on whether or not to send.

- this decision depends on the state of the medium (idle or busy).
ALOHA

- the earliest random access method
- was developed at the University of Hawaii in early 1970.
- It was designed for a radio (wireless) LAN, but it can be used on any shared medium.
- It is obvious that there are potential collisions in this arrangement.
- The medium is shared between the stations. When a station sends data, another station may attempt to do so at the same time.
- The data from the two stations collide and become garbled.
Frames in a pure ALOHA network

- Station 1
- Station 2
- Station 3
- Station 4

Collision duration

Time
Frames in a slotted ALOHA network
CSMA

- The chance of collision can be reduced if a station senses the medium before trying to use it.
- Carrier sense multiple access (CSMA) requires that each station first listen to the medium (or check the state of the medium) before sending.
- In other words, CSMA is based on the principle “sense before transmit” or “listen before talk.”
Space/time model of a collision in CSMA
Behavior of three persistence methods

a. 1-persistent

b. Nonpersistent

c. p-persistent
CSMA/CD

- a station monitors the medium after it sends a frame to see if the transmission was successful.

- If so, the station is finished. If, however, there is a collision, the frame is sent again.
Collision of the first bits in CSMA/CD
Collision and abortion in CSMA/CD
Energy level during transmission, idleness, or collision
CSMA/CA

- was invented for wireless networks.

- Collisions are avoided through the use of CSMA/CA’s three strategies:
 - the interframe space
 - the contention window
 - acknowledgments
Contestation window

- Busy
- Continuously sense
- Found idle
- IFS
- Contention window
- Size: binary exponential
CMACA and NAV
CONTROLLED ACCESS

- the stations consult one another to find which station has the right to send.

- a station cannot send unless it has been authorized by other stations.

- three controlled-access methods.
Reservation

- a station needs to make a reservation before sending data.

- Time is divided into intervals.

- In each interval, a reservation frame precedes the data frames sent in that interval.
Reservation access method
Polling

- Polling works with topologies in which one device is designated as a primary station and the other devices are secondary stations.
- All data exchanges must be made through the primary device even when the ultimate destination is a secondary device.
- The primary device controls the link; the secondary devices follow its instructions.
- It is up to the primary device to determine which device is allowed to use the channel at a given time.
Select and poll functions in polling-access method

Select

Poll

Primary
A
B

1. SEL

2. ACK

3. Data

4. ACK

1. Poll

2. NAK

3. Poll

4. Data

5. ACK
Token Passing

- the stations in a network are organized in a logical ring.

- In other words, for each station, there is a predecessor and a successor

- The predecessor is the station which is logically before the station in the ring; the successor is the station which is after the station in the ring.
Logical ring and physical topology in token-passing access method

a. Physical ring

b. Dual ring

c. Bus ring

d. Star ring
CHANNELIZATION

- Channelization (or channel partition, as it is sometimes called) is a multiple-access method in which the available bandwidth of a link is shared in time, frequency, or through code, among different stations.

- three protocols: FDMA, TDMA, and CDMA.
FDMA

- the available bandwidth is divided into frequency bands

- Each station is allocated a band to send its data. In other words, each band is reserved for a specific station, and it belongs to the station all the time
Frequency-division multiple access (FDMA)
TDMA

- the stations share the bandwidth of the channel in time

- Each station is allocated a time slot during which it can send data

- Each station transmits its data in its assigned time slot
Time-division multiple access (TDMA)
CDMA

- CDMA differs from FDMA in that only one channel occupies the entire bandwidth of the link.

- It differs from TDMA in that all stations can send data simultaneously; there is no timesharing.
Simple idea of communication with code

Data: $d_1 \cdot c_1 + d_2 \cdot c_2 + d_3 \cdot c_3 + d_4 \cdot c_4$