Chapter 7 – Data Link Control Protocols

Data Link Control Protocols

when sending data, to achieve control, a layer of logic is added above the Physical layer

data link control or a data link control protocol

> to manage exchange of data over a link:

- frame synchronization
- flow control
- error control
- addressing
- control and data
- link management

Flow Control

ensure sending entity does not overwhelm receiving entity prevent buffer overflow > influenced by: transmission time • time taken to emit all bits into medium propagation time time for a bit to traverse the link assumption is all frames are successfully received with no frames lost or arriving with errors

Model of Frame Transmission

Stop and Wait

simplest form of flow control

works well for a message sent in a few large frames

> stop and wait becomes inadequate if large block of data is split into small frames by source

Sliding Windows Flow Control

> allows multiple numbered frames to be in transit

- receiver has buffer W long
- transmitter sends up to W frames without ACK
- ACK includes number of next frame expected
- sequence number is bounded by size of field (k)
 - frames are numbered modulo 2^k
 - giving max window size of up to 2^k 1
- receiver can ACK frames without permitting further transmission (Receive Not Ready)

must send a normal acknowledge to resume

if have full-duplex link, can piggyback ACKs

Sliding Window Diagram

(b) Receiver's perspective

Sliding Window Example

Source System A

Destination System B

Error Control Techniques

detection and correction of errors such as:

error detection

positive acknowledgment

lost frames -a frame fails to arrive at the other side

damaged frames -frame arrives but some of the bits are in error

negative acknowledgement & retransmission

> retransmission after timeout

Automatic Repeat Request (ARQ)

- collective name for error control mechanisms
- effect of ARQ is to turn an unreliable data link into a reliable one
- versions of ARQ are:
 - stop-and-wait
 - go-back-N
 - selective-reject

Stop and Wait ARQ

- > source transmits single frame
- waits for ACK
 - no other data can be sent until destination's reply arrives
- if frame received is damaged, discard it
 - transmitter has timeout
 - if no ACK within timeout, retransmit

if ACK is damaged, transmitter will not recognize

- transmitter will retransmit
- receiver gets two copies of frame
- use alternate numbering and ACK0 / ACK1

Go-Back-N ARQ

- > most commonly used error control
- based on sliding-window
- > use window size to control number of outstanding frames
- if no error, ACK as usual
- > if error, reply with rejection
 - destination will discard that frame and all future frames until frame in error is received correctly
 - transmitter must go back and retransmit that frame and all subsequent frames

Go Back N - Handling

Damaged frame

- error in frame *i* so receiver rejects frame *i*
- transmitter retransmits frames from i

Lost frame

- frame i lost and either
 - transmitter sends *i*+1 and receiver gets frame *i*+1 out of sequence and rejects frame *i*
 - or transmitter times out and sends ACK with P bit set which receiver responds to with ACK i
- transmitter then retransmits frames from *i*

Go Back N - Handling

Selective-Reject (ARQ)

- > also called selective retransmission
- only rejected frames are retransmitted
- subsequent frames are accepted by the receiver and buffered
- > minimizes retransmission
- receiver must maintain large enough buffer
- > more complex logic in transmitter
 - less widely used
- useful for satellite links with long propagation delays

Go-Back-N vs. Selective Reject

Flag Fields and Bit Stuffing

> delimit frame at both ends with 01111110

- receiver hunts for flag sequence to synchronize
- bit stuffing used to avoid confusion with data containing flag sequence 01111110
 - 0 inserted after every sequence of five 1s
 - if receiver detects five 1s it checks next bit
 - if next bit is 0, it is deleted (was stuffed bit)
 - if next bit is 1 and seventh bit is 0, accepted as flag
 - if sixth and seventh bits 1, sender is indicating abort

Original Pattern:	
1111111111101111101111110	
After hit stuffing	
After bit-sturning	
1111101111101101111101011111010	