Chapter 5 – Signal Encoding Techniques

Signal Encoding Techniques

(b) Modulation onto an analog signal

Figure 5.1 Encoding and Modulation Techniques

Digital Data, Digital Signal

digital signal

- discrete, discontinuous voltage pulses
- each pulse is a signal element
- binary data encoded into signal elements

Terminology

- unipolar all signal elements have the same sign
- polar one logic state represented by positive voltage and the other by negative voltage
- data rate rate of data (R) transmission in bits per second
- duration or length of a bit time taken for transmitter to emit the bit (1/R)

modulation rate – rate at which the signal level changes, measured in baud = signal elements per second.

Interpreting Signals

need to know:

- timing of bits when they start and end
- signal levels

factors affecting signal interpretation:

- signal to noise ratio
- data rate
- bandwidth
- encoding scheme

Encoding Schemes

signal spectrum

 good signal design should concentrate the transmitted power in the middle of the transmission bandwidth

clocking

 need to synchronize transmitter and receiver either with an external clock or sync mechanism

error detection

 responsibility of a layer of logic above the signaling level that is known as data link control signal interference and noise immunity

- certain codes perform better in the presence of noise
- cost and complexity
- the higher the signaling rate the greater the cost

Nonreturn to Zero-Level (NRZ-L)

- > easiest way to transmit digital signals is to use two different voltages for 0 and 1 bits
- voltage constant during bit interval
 - no transition (no return to zero voltage)
 - absence of voltage for 0, constant positive voltage for 1
 - more often, a negative voltage represents one value and a positive voltage represents the other(NRZ-L)

NRZ Pros & Cons

Pros

- easy to engineer
- make efficient use of bandwidth

used for magnetic recording

not often used for signal transmission

Cons

- presence of a dc component
- lack of synchronization capability

Manchester Encoding

transition in middle of each bit period
midbit transition serves as clock and data
low to high transition represents a 1
high to low transition represents a 0
used by IEEE 802.3

Digital Data, Analog Signal

Encoding Techniques

Amplitude shift keying (ASK)

 used to transmit digital data over optical fiber Frequency shift keying (FSK)

> most common form is binary FSK (BFSK)

Phase shift keying (PK)

 phase of carrier signal is shifted to represent data main use is public telephone system

- has frequency range of 300Hz to 3400Hz
- uses modem (modulatordemodulator)

Modulation Techniques

Amplitude Shift Keying
encode 0/1 by different carrier amplitudes
usually have one amplitude zero
susceptible to sudden gain changes
inefficient

- > used for:
 - up to 1200bps on voice grade lines
 - very high speeds over optical fiber

Binary Frequency Shift Keying

- > two binary values represented by two different frequencies (near carrier)
- less susceptible to error than ASK
- > used for:
 - up to 1200bps on voice grade lines
 - high frequency radio
 - even higher frequency on LANs using coaxial cable

Multiple FSK

 each signalling element represents more than one bit
 more than two frequencies used

- > more than two frequencies used
- > more bandwidth efficient
- > more prone to error

Phase Shift Keying

- > phase of carrier signal is shifted to represent data
- binary PSK
 - two phases represent two binary digits
- > differential PSK
 - phase shifted relative to previous transmission rather than some reference signal

Quadrature PSK

> more efficient use if each signal element represents more than one bit

- uses phase shifts separated by multiples of π/2 (90°)
- each element represents two bits
- split input data stream in two and modulate onto carrier and phase shifted carrier
- can use 8 phase angles and more than one amplitude
 - 9600bps modem uses 12 angles, four of which have two amplitudes

QAM Variants

two level ASK

- each of two streams in one of two states
- four state system
- essentially QPSK
- > four level ASK
 - combined stream in one of 16 states
- have 64 and 256 state systems
- > improved data rate for given bandwidth
 - increased potential error rate

Analog Data, Digital Signal

- > digitization is conversion of analog data into digital data which can then:
 - be transmitted using NRZ-L
 - be transmitted using code other than NRZ-L
 - be converted to analog signal
- > analog to digital conversion done using a codec
 - pulse code modulation
 - delta modulation

Digitizing Analog Data

Pulse Code Modulation (PCM)

> sampling theorem:

- "If a signal is sampled at regular intervals at a rate higher than twice the highest signal frequency, the samples contain all information in original signal"
- eg. 4000Hz voice data, requires 8000 sample per second

strictly have analog samples
 Pulse Amplitude Modulation (PAM)
 assign each a digital value

PCM Example

PCM Block Diagram

Analog Data, Analog Signals

- modulate carrier frequency with analog data
- > why modulate analog signals?
 - higher frequency can give more efficient transmission
 - permits frequency division multiplexing
- > types of modulation:
 - Amplitude
 - Frequency
 - Phase

Analog Modulation Techniques

Amplitude Modulation
 Frequency Modulation
 Phase Modulation

