Chapter 3
Transport Layer



Transport services and protocols

appllcatlon
Plaaniy ‘

transport
networ
data link jrosesro
phy5|cal

A

E

<« provide logical communication
between app processes
running on different hosts

transport protocols run in
end systems

" send side: breaks app
messages into segments,
passes to network layer

" rcv side: reassembles _
segments into messages, transport

network

passes to app layer , data Ik

phy5|cal
+ more than one transport
protocol available to apps

= Internet;: TCP and UDP

3

K/
0’0

Transport Layer 3-2



Transport vs. network layer

+ network layer: logical
communication
between hosts

< transport layer:
logical
communication
between processes
" relies on, enhances,

network layer
services

- household analogy:

|2 kids in Ann s house sending
letters to |2 kids in Bill s
house:

» hosts = houses
» processes = kids

% app messages = letters in
envelopes

+ transport protocol = Ann
and Bill who demux to in-
house siblings

» network-layer protocol =

postal service

Transport Layer 3-3




Internet transport-layer protocols

+ reliable, in-order
delivery (TCP)
" congestion control
* flow control
" connection setup

< unreliable, unordered

delivery: UDP

= no-frills extension of
“best-effort” IP

<+ services not available:
= delay guarantees
" bandwidth guarantees

<& 7

application
DO

net

e
data li
hysi
, abEl network
netw data link
data linR(e, hysical ——
physical O
ork a
k
Qf'—\';y,-\- p (/
& q network |4
G5 e data link O
%@7 physical A
|__networkN[®,
data link
shysical

network

data link

physical

“ network
data link
, P physical
4 \ 2
% 3

d

ation

networ
data link
physical

Transport Layer 3-4




Multiplexing/demultiplexing

- multiplexing at sender:
handle data from multiple
sockets, add transport header
(later used for demultiplexing)

— demultiplexing at receiver: —
use header info to deliver
received segments to correct
socket

application
application
\
transport NetWwark
network it
link physi¢al
N | _
physical

application |:| socket
Q process
trangport
network
[{pk D
physical

Transport Layer 3-5



How demultiplexing works

+ host receives |IP datagrams

= each datagram has source IP
address, destination IP
address

" each datagram carries one
transport-layer segment

= each segment has source,
destination port number
+ host uses IP addresses &
pbort numbers to direct
segment to appropriate
socket

32 bits

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer 3-6



Connectionless demultiplexing

<+ recall: created socket has + recall: when creating
host-local port #: datagram to send into
DatagramSocket mySocketl UDP socket, must specify
= new DatagramSocket (12534); . .
" destination IP address

" destination port #

« when host receives UDP IP datagrams with same
segment: dest. port #, but different

" checks destination port # — :::g}fj lijfcderiifts

in segment ) )
. 8 numbers will be directed
" directs UDP segment to to same socket at dest
socket with that port #

Transport Layer 3-7



Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new g mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157) ; application (5773) ;
application application
re
‘ tramsport o[, al
trangport et wo n trangport
nefwork | n|< netwprk
link plh‘/sical link
N hydical hybical \
physica phy \
=~ — =X
source port: 6428 source port: ?
. dest port: 9157 L dest port: ?
> e ¥
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-8



Connection-oriented demux

+» TCP socket identified
by 4-tuple:
" source IP address
" source port number
" dest |IP address
" dest port number

+ demux: receiver uses
all four values to direct
segment to appropriate
socket

% server host may support
many simultaneous TCP
sockets:

= each socket identified by
its own 4-tuple

< web servers have
different sockets for
each connecting client

" non-persistent HT TP will
have different socket for
each request

Transport Layer 3-9



Connection-oriented demux: examEIe

application
application - - - application
A ansport _Ijﬁ
tranpport Tetvbork Fansport
netyvork lidk network
lihk )hysical link
:" ‘f phykical gl server: [P physical E' \
e address B o
host: IP source IP,port: B,80 + host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
DS dest IP,port: B,80
source IP,port: A,9157 -
dest If, port: B8O source IP,port: C,9157

dest IP,port: B,80

three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets Transport Layer 3-10



Connection-oriented demux: examEIe

threaded server

application

application

application

trangport _ljmansport
netyork network
link link
:" ‘f phykical gl server: [P physical E' \
e — address B i
host: IP source IP,port: B,80 + host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A,9157 -
dest IP, t: B
, port: B,80 source 1P,port: C,0157

dest IP,port: B,80

Transport Layer 3-11



UDP: User Datagram Protocol [RFC 768]

% “nofrills,” “bare bones” «» UDP use:
Internet transport = streaming multimedia
protocol apps (loss tolerant, rate
+ “best effort” service, sensitive)
UDP segments may be: = DNS
" |ost = SNMP
" delivered out-of-order + reliable transfer over
to app UDP:

< connectionless:

" no handshaking
between UDP sender,
receiver

" each UDP segment
handled independently
of others

" add reliability at
application layer

= application-specific error
recovery!

Transport Layer 3-12



UDP: segment header

length, in bytes of
UDP segment,
including header

32 bits

source port #

~

length <~ | checksum

— why is there a UDP? __

% NO conhnection

application establishment (which can
data add delay)
(payload)

<+ simple: no connection
state at sender, receiver

< small header size

+ Nno congestion control:
UDP can blast away as
fast as desired

UDP segment format

Transport Layer 3-13



UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

sender: receiver:

% treat segment contents, » compute checksum of
including header fields, received segment
as sequence of 16-bit .

+ check if computed

integers
& checksum equals checksum

< checksum: addition

(one’ s complement field value:

sum) of segment * NO - error detected

contents = YES - no error detected.
» sender puts checksum But maybe errors

value into UDP nonetheless? More later

checksum field

Transport Layer 3-14



Internet checksum: example

example: add two | 6-bit integers

6-
1 1 O 01 O 01 O 01
1 1 1 01 1 01 1 01

O =
= O

1 1 1
0] 0] o)

wraparound (1)1 001 1 101110111011

sum

10 0 0
checksum 01 1 1

= O
= O

111 111 1111
00O O00O O0O00O

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Transport Layer 3-15



Principles of reliable data transfer

<+ important in application, transport, link layers
= top-10 list of important networking topics!

sending receiver I
process I process
| 1
reliable chcnrmel)j

application
layer

fransport
layer

() provided service

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-16



Principles of reliable data transfer

% important in application, transport, link layers
= top-10 list of important networking topics!

sending receiver I
process I process
| 1
reliable chcnrmel)j

application
layer

fransport
layer

Junreliable Chonnel)i

(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-17



Principles of reliable data transfer

% important in application, transport, link layers
= top-10 list of important networking topics!

senalngl receiver I
process process
! 1

. rdt send()
reliable chcnrmel)j —

application
layer

deliver data()

+=

8_ 5 reliable data reliable data

B > transfer protocol transfer protocol

% O (sending side) (receiving side)

= udt_send()i [packet | [ packet| Irdt rev ()

Junreliable Chonnel)i

(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-18



Reliable data transfer: getting started

rdt send() : called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

rdt_ send()

reliable data
fransfer protocol
(sending side)

send
side

deliver data () : called by
rdt to deliver data to upper

_/

data Tdeliver_data ()

reliable data receive
fransfer protocol .
(receiving side) side

udt_send ()} [pockel

packet Irdt_rcv ()

T—»()unrelicible channel )J

udt send () : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt rcv () : called when packet
arrives on rcv-side of channel

Transport Layer 3-19



Reliable data transfer: getting started

’

we |l

+ incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

<+ consider only unidirectional data transfer
= but control info will flow on both directions!

+ use finite state machines (FSM) to specify sender,

receiver

event causing state transition
actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

|

Transport Layer 3-20



rdtl.0: reliable transfer over a reliable channel
+ underlying channel perfectly reliable

" no bit errors

" no loss of packets
+ separate FSMs for sender, receiver:

= sender sends data into underlying channel

" receiver reads data from underlying channel

Wait for
call from
above

rdt_send(data) “AWait for

call from
below

rdt_rcv(packet)

extract (packet,data)

packet = make_pki(data) deliver_data(data)

udt_send(packet)

sender receiver

Transport Layer 3-21



rdt2.0: channel with bit errors

% underlying channel may flip bits in packet
= checksum to detect bit errors

< the question: how to recover from errors:

»

How do humans recover from ‘errors
during conversation?

Transport Layer 3-22



rdt2.0: channel with bit errors

% underlying channel may flip bits in packet
= checksum to detect bit errors

< the question: how to recover from errors:

= acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

= negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

= sender retransmits pkt on receipt of NAK
% new mechanisms in rdt2.0 (beyond rdt1l.0):

" error detection

= feedback: control msgs (ACK,NAK) from receiver to
sender

Transport Layer 3-23



rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK((rcvpkt)

Wait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-24



rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK((rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

D

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
3
A

rdt rcv( rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-25



rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

dt rev(

£

rcvpkt) &&

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

udt_send(sndpkt)

) N ( )
rdt_rcv(rcvpkt) && isACK(rcvpkt) Sa _
2 Wait for
call from

below

A

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-26



rdt2.0 has a fatal flaw!

what happens if handling duplicates:

ACK/NAK corrupted!?

+ sender doesn’ t know
what happened at
receiver!

% can’ tjust retransmit:
possible duplicate

— stop and wait

response

sender sends one packet,
then waits for receiver

» sender retransmits

current pkt if ACK/NAK
corrupted

<+ sender adds sequence

number to each pkt

» receiver discards (doesn’ t

deliver up) duplicate pkt

Transport Layer 3-27



rdt2.1: sender, handles garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
ISNAK(rcvpkt) )

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A A
Wait for Wait for
ACK or
rdt_rcv(rcvpkt) && NAK 1
( corrupt(rcvpkt) ||
iSNAK (rcvpkt) ) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-28



rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqgO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-29



rdt2.l: discussion

sender: receiver:
% seq # added to pkt + must check if received
+ two seq. # s (0,1) will packet is duplicate
suffice. Why? " state indicates whether
: : 0 or | is expected pkt
« must check if received seq #
ACK/NAK corrupted .
. % Nnote: receiver can not
% twice as many states know if its last
" state must ACK/NAK received
remember whether OK at sender

“expected’ pkt should
have seq # of 0 or |

Transport Layer 3-30



rdt2.2: a NAK-free protocol

+ same functionality as rdt2.l, using ACKs only

+ instead of NAK, receiver sends ACK for last pkt
received OK

" receiver must explicitly include seq # of pkt being ACKed

<+ duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-31



rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
~. — — rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||

....................... e Tho' ) iAok
..................................... above 0 udt_send(sndpkt)
............................................... sender FSM

................................................. fragment rdt_rcv(rcvpkt)
...................................... && notcorrupt(rcvpkt)
wrotengse T && IsACK(rcvpkt,0)

(Corrupt(rcvpkt) ” ...................................... A
e o) receiver FSM

JT— fragment

(I T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkty e
&& has_seql(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_ pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-32




rdt3.0: channels with errors and loss

new assumption:
underlying channel can

also lose packets
(data, ACKs)

" checksum, seq. #,
ACKSs, retransmissions
will be of help ... but
not enough

approach: sender waits

“reasonable” amount of
time for ACK

< retransmits if no ACK

received in this time

+ if pkt (or ACK) just delayed

(not lost):

" retransmission will be
duplicate, but seq. # s
already handles this

" receiver must specify seq
# of pkt being ACKed

% requires countdown timer

Transport Layer 3-33



rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum)
\ udt_send(sndpkt)
\ start_timer

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (/

rdt_rcv(rcvpkt) &&
( corrupt(rcvpkt) ||
ISACK(rcvpkt,0) )

A

Wait for
call Ofrom
above

( corrupt(rcvpkt) ||
ISACK(rcvpkt,1) )
A

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-34



rdt3.0 in action

sender receiver
send pkt0 ktO
\\ Frcv pkto
ack send ackO
rcv ackO
send pktl \Wl\‘
rcv pktl
A}k/ send ackl
rcv ackl
send pkt0 \NO\‘
rcv pktO
ack send ackO
(a) no loss

sender
send pktO

rcv ackO
send pktl_

receliver

ktO
\\ rcv pkt0

ack send ackO

fé

timeout_
resend pktl

rcv ackl
send pkt0

/

ktl

/

rcv pktl
ck send ackl

ktO

\i

rcv pkt0
ack send ack0

(b) packet loss

Transport Layer 3-35



rdt3.0 in action

sender receliver
send pkt0 ktO
\\ Fcv pkto
ack send ackO
rcv ackO
send pktl_ \K
rcv pktl
yockl—=" send ack1

loss
‘ t/meout_
resend pktl \K rcv pktl
s
rcv ackl
send pkt0 \!to\‘
rcv pktO

ack send ack0

(c) ACK loss

sender receiver
send pkt0
\\ rcv pkto
send ack0
rcv ackO /
send pktl_ \\
rcv pktl

send ack1l
ackl
. t/meou
resend pktl rcv pktl
rcv ackl (detect dupllcate)

send pktoﬁ< send ack
rcv ackl rcv pktO

send pkt0 send ack0
rcv pktO

/ (detect duplicate)
send ackO
(d) premature timeout/ delayed ACK

Transport Layer 3-36



Performance of rdt3.0

% rdt3.0 is correct, but performance stinks
+» e.g.: | Gbps link, |5 ms prop. delay, 8000 bit packet:

8000 bits

L .
= — = ; = 8 microsecs
Dirans = R 1P bits/sec
= U 4o utilization — fraction of time sender busy sending
L/R .008
u_ = 28 = 0.00027

sender  BTT + /R ~ 30.008

* if RTT=30 msec, | KB pkt every 30 msec: 33kB/sec thruput
over | Gbps link

% network protocol limits use of physical resources!

Transport Layer 3-37



rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t =0

last packet bit transmitted, t = L / R 1]

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next|
packet, t = RTT + L /R [~
Q-

U L/R .008

sender= =T = joo0s = 0:00027

Transport Layer 3-38



Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
" range of sequence numbers must be increased
» buffering at sender and/or receiver

data pc:cke’r—»

g

data packets—» ‘p

<+— ACK packets

(a) a stop-and-wait protocol in operation {b) a pipelined protocol in operation

% two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-39



Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fx-- - -
last bit transmitted, t =L/ R

first packet bit arrives
last packet bit arrives, send ACK

> last bit of 2nd packet arrives, send ACK
—last bit of 31 packet arrives, send ACK

RTT

ACK arrives, send next]
packet, t=RTT+L/R

- 3-packet pipelining increases
"""""""""" utilization by a factor of 3!

v
3L/R .0024 '/
sender = ——T 0008 0.00081

U

Transport Layer 3-40



Pipelined protocols: overview

Go-back-N:

<+ sender can have up to

N unacked packets in

pipeline

% receiver only sends
cumulative ack

= doesn’ t ack packet if
there’ s a gap

< sender has timer for
oldest unacked packet

= when timer expires,
retransmit all unacked
packets

Selective Repeat:

+ sender can have up to N
unack ed packets in
pipeline

% rcvr sends individual ack
for each packet

< sender maintains timer
for each unacked packet

= when timer expires,
retransmit only that
unacked packet

Transport Layer 3-41



Go-Back-N: sender

+ k-bit seq # in pkt header
= “window” of up to N, consecutive unack’ ed pkts allowed

send_base  hextsegnum dlready Usable. ho
L i ack’ed vet sent
JOOIRE L LTRELO0000I | semtogtae [ otusam
t __ window size—%
N

« ACK(n):ACKs all pkts up to, including seq # n - “cumulative
ACK~

* may receive duplicate ACKs (see receiver)

+ timer for oldest in-flight pkt

+ timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-42



GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextsegnuml])
if (base == nextsegnum)

start_timer
nextsegqnum-++
~~~~~ }
A e else
bl e refuse_data(data)
nextsegnum=1 ., ( D _
AT . " timeout
start_timer
udt_send(sndpkt[base])
rdt_rcv(rcvpkt) O udt_send(sndpkt[base+1])
&& corrupt(rcvpkt)
udt_send(sndpkt[nextseqgnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else

start_timer
- Transport Layer 3-43



GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(revpkt)
T~ < D && notcurrupt(rcvpkt)

A T~ ~o - o && hassegnum(rcvpkt,expectedsegnum)
=~ >

expectedseqnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

" may generate duplicate ACKs

" need only remember expectedsegqnum
% out-of-order pkt:

= discard (don’ t buffer): no receiver buffering!

* re-ACK pkt with highest in-order seq #

Transport Layer 3-44



GBN in action

sender window (N=4) sender receiver

012 3 WA send pkt0

F¥E): 5678 send pktl \ :

SHELC G 7 g send Ektz- receive pkt0, send ack0

FWE) 5678 send pkt3 \Xloss receive pktl, send ack1l
(wait) receive pkt3, discard,

oMEEEE678 rcv ack0, send pkt4 (re)send ackl

0 1EkEEI6 78 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ackl
receive pkt5, discard,

(re)send ackl

ignore duplicate ACK

Pkt 2 timeout

0 1 EEEY6 7 8 send pkt2
12 3 45 WA send pkt3 \ _
rcv pkt2, deliver, send ack2

0 1EEEYF6 7 8 send pkt4 _
12 3 45 s send pkt5 rcv pkt3, deliver, send ack3

rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

Transport Layer 3-45



Selective repeat

<+ receiver individually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

+ sender only resends pkts for which ACK not
received

* sender timer for each unACKed pkt

< sender window

= N consecutive seq # s
" limits seq #s of sent, unACKed pkts

Transport Layer 3-46



Selective repeat: sender, receiver windows

send_base  nexfsegnum dlready Usable. not
' ack’ed yet sent
LTI | sz [ oo
* __ window size —4
N

(a) sender view of sequence numlbers

acceptable
(buffered) but R (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllllIIIIIIIIIII |opectes ner [ rereseer

t _ window size_4

1 N

rcv_base

I out of order

(b) receiver view of sequence numbers

Transport Layer 3-47



Selective repeat

— sender
data from above:

+ if next available seq # in
window, send pkt

timeout(n):

+ resend pkt n, restart
timer

ACK(n) in [sendbase,sendbase+N]:
<+ mark pkt n as received

+ if n smallest unACKed
pkt, advance window base
to next unACKed seq #

— receiver

Pl(t nin [rcvbase, rcvbase+N-1]
+ send ACK(n)
» out-of-order: buffer

» in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

Pl(t N 1IN [rcvbase-N,revbase-1]
+» ACK(n)

otherwise:

% ignore

Transport Layer 3-48




Selective repeat in action

sender window (N=4) sender recelver
k) 5678 send pkt0
R} 5678 send pktl \ .
kt0, send ackO
012 3 ARA send pkt2- receive pkty,
FFEL: 5678 send pkt3 T~Xioss receive pktl, send ackl
] wait
(walt) receive pkt3, buffer,
oMEEX¥ 673 rcv ack0, send pkt4 send ack3
0 1EKEE¥ 78 rcv ackl, send pkt5 receive pkt4, buffer,
send ack4
rrecord ack3 arrived receive pkt5, buffer,
DKt 2 timeout send acks
0 1EEEYF6 7 8 send pkt2
O 1PREREYS 7 8 record ack4 arrived _
012948678 record ack4 arrived I‘C|2/ pktZk, dehl\(/er_ pktZéI %)
0 1EEEEF6 7 8 pkt3, pkt4, pkt5; send ac

Q. what happens when ack2 arrives?

Transport Layer 3-49



sender window receiver window

Selective repeat:  (ferreceipy (after receipt

dilemma 012 DKO
3012% o]0 12
[FRs 012 —pkt2 — 01EEN1 2
eX&mP|eI 7 — 01 2EH2
o012 T

~ seq#'s:0,1,2,3

1 2 3 ofl
< window size=3 pktO ——» will accept packet
] with seq number 0
% receiver sees no (a) no problem
difference in two receiver can’t see sender side.
scenarios! recelver behavior identical in both cases!

. something’s (very) wrong!
<+ duplicate data g (very) wrong

accepted as new in FH:012 —DKO
(b) 012 —RKkt1 b/ 1 2 3[VEW
[F¥)3012 _pkt2 1 2 3 0 [
‘%‘ 0 1 2ETE2

Q: what relationship o
between seq # size timeout X [
. . retransmlt pktO
and window size to [EEJ012 —DKO

will accept packet
with seq number 0

. . ?
avoid problem in (b)! (b) 0ops!

Transport Layer 3-50



TC P: Ove rVieW RFCs: 793,1122,1323, 2018, 258

% point-to-point:
® one sender, one receiver
<+ reliable, in-order byte
steam:

" no “message
. »
boundaries

<+ pipelined:
= TCP congestion and

flow control set window
size

< full duplex data:

» bi-directional data flow
In same connection

= MSS: maximum segment
size
< connection-oriented:

* handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-51



TCP segment structure

« 32 hits

URG: urgent data
(generally not used)\

source port # dest port #

ACK: ACK #

. Sequence number

valid

\olqlowledgement number

PSH: push data now
(generally not used) —

head) 1 il ‘EAPRSF receive window
7
Urg data pointer

RST, SYN, aN—T
connection estab

op}'{ s (variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept

Transport Layer 3-52



TCP seq. numbers, ACKs

outgoing segment from sender

sequence numbers° source port # dest port #
sequence number
u b)’te stream number of acknowledgement number
first byte in segment’s || | rwnd
checksum urg pointer
data
wmdow Size
acknowledgements: N

"seq # of next byte
expected from other side

= cumulative ACK

sender sequence number space

. . sent sent, not- usable not
Q: how receiver handles ACKed yet ACKed but not usable
out-of-order segments 1(“Iig|;r;1-t”) yet sent
=A: TCP spec doesn’ t say, incoming segment to sender

source port # dest port #

sequence number

R acknowledgement number

- up to implementor

A

rwnd

checksum

urg pointer

Transport Layer 3-53



TCP seq. numbers, ACKs

Host A Host B
™ \
User &
types
‘C; \

host ACKs
receipt

of echoed
‘C’

Seq=42, ACK=79, w

Seq=79, ACK=43, data= ‘C’

\

Seq=43, ACK:K

simple telnet scenario

host ACKs
receipt of

‘C’, echoes
back ‘C

Transport Layer 3-54



TCP round trip time, timeout

Q: how to set TCP Q_ how to estimate RTT?

timeout value! <+ SampleRTT: measured
. time from segment
« longer than RTT transmission until ACK
= but RTT varies receipt
< too short: premature " j[gnore retransmissions
timeout, unnecessary ~ + SampleRTT will vary, want
retransmissions estimated RTT "smoother

. 100 lone: sl . = average several recent
% 100 long: slow reaction measurements, not just

to segment loss current SampleRTT

Transport Layer 3-55



TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

+» exponential weighted moving average
+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 +

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

¢ sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-56



TCP round trip time, timeout

+ timeout interval: EstimatedRTT plus “safety margin”
" large variation in EstimatedRTT -> larger safety margin

<+ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-P)*DevRTT +
f* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-57



TCP fast retransmit

% time-out period often
relatively long:

" long delay before
resending lost packet

+ detect lost segments
via duplicate ACKs.

= sender often sends
many segments back-
to-back

" if segment is lost, there
will likely be many

duplicate ACKs.

—- JCP fast retransmit ——

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #
" |ikely that unacked
segment lost, so don’ t

wait for timeout

Transport Layer 3-58



TCP fast retransmit

Host A Host B
'\

— Seq=92, 8 bytes of data

Seq= 100%%
\X

(ACK=1OO

timeout

’ACKZlOO
~Seq=100, 20 bytes of data

A4

v VL
fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 3-59



TCP flow control

application may

ey, |

application
process

remove data from

I_

application

TCP socket buffers ....

... Slower than TCP
receiver is delivering —
(sender is sending)

— flow control

N—

TCP socket

receiver buffers
TAY

|

TCP
code

receiver controls sender, so
sender won’ t overflow
receiver’ s buffer by transmitting
too much, too fast

IP
code

|
from sender

I 4
!

receiver protocol stack

Transport Layer 3-60



TCP flow control

/7
0‘0

receiver “advertises’ free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

= RevBuffer size set via

socket options (typical default
is 4096 bytes)

" many operating systems
autoadjust RevBuffer
sender Iimits amount of
unacked ( in-flight”) data to
receiver’ s rwnd value

guarantees receive buffer
will not overflow

to application process

FI_‘

?
RcvBuffer buffered data
rwmf free buffer space
TCP segment payloads
receiver-side buffering

Transport Layer 3-61



Principles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

< different from flow control!
+ manifestations:
" lost packets (buffer overflow at routers)
" long delays (queueing in router buffers)
<+ a top-10 problem!

Transport Layer 3-62



AEEroaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion _network-assisted =
control: congestion control:
+ no explicit feedback <+ routers provide
from network feedback to end systems
<+ congestion inferred " single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
<« approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-63



TCP congestion control: additive increase
multiplicative decrease
% approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
|

time
Transport Layer 3-64



TCP Congestion Control: details

sender sequence number space
¢ cWnd ——p|

last byte J \ L last byte
yet ACKed
(“in-
flight™)

< sender limits transmission:

LastByteSent- < cwnd
LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

< roughly: send cwnd
bytes, wait RTT for
ACKS, then send

more bytes

cwnd

rate bytes/sec

22

Transport Layer 3-65



TCP Slow Start

Host B

+ when connection begins, =
Increase rate

exponentially until first T —Slesegmen

loss event;
" initially cwnd = | MSS %’

" double cwnd every RTT

* done by incrementing
cwnd for every ACK Ur segments

received
% summary: initial rate is
slow but ramps up
exponentially fast

s
>

+«— RTT—

time

Transport Layer 3-66



TCP: detecting, reacting to loss

» loss indicated by timeout:
* cwnd set to | MSS;

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

- loss indicated by 3 duplicate ACKs: TCP RENO

" dup ACKs indicate network capable of delivering
some segments

o

o

* cwnd is cut in half window then grows linearly

% TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-67



TCP: switching from slow start to CA

Q: when should the
exponential
increase switch to 4 TCP Reno
linear? 27

A: when cwnd gets
to |/2 of its value
before timeout.

o
l

ssthresh

ssthresh

Congestion window
(in segments)

TCP Tahoe

° . 0
Implementation: 0123456 78 9101112131415
+ variable ssthresh Transmission found

<+ on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

Transport Layer 3-68



TCP throughput

% avg. TCP thruput as function of window size, RTT?
" ignore slow start, assume always data to send

+ W: window Size (measured in bytes) Where loss occurs
= avg. window size (# in-flight bytes) is /4 W
" avg. thruput is 3/4W per RTT

avg TCP thruput = % % bytes/sec

N14%4%4%%

Transport Layer 3-69



77

TCP Futures: TCP over “long, fat pipes

*

example: 1500 byte segments, |00ms RTT, want
|0 Gbps throughput

requires W = 83,333 in-flight segments

throughput in terms of segment loss probability, L
[Mathis 1997]:

L)

0’0

0’0

TCP throughput = Lcc MOS

RTT./L

=?» to achieve 10 Gbps throughput, need a loss rate of L
=210 — a very small loss rate!

+ new versions of TCP for high-speed

&

Transport Layer 3-70



TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

ENG—

- bottleneck
Q router

TCP connection 2 capacity R

Transport Layer 3-71



Why is TCP fair?

two competing sessions:
+ additive increase gives slope of |, as throughout increases
+ multiplicative decrease decreases throughput proportionally

Connection 2 throughput 10

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

Transport Layer 3-72



Fairness gmorez

Fairness and UDP

+ multimedia apps often
do not use TCP

= do not want rate
throttled by congestion
control

< instead use UDP;

" send audio/video at
constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

< application can open
multiple parallel
connections between two
hosts

L)

4

. web browsers do this

L)

L)

+ e.g., link of rate R with 9

existing connections:

" new app asks for | TCP, gets rate
R/10

" new app asks for || TCPs, gets R/2

Transport Layer 3-73



