
Physics 214 

 

Modern Physics 

Lab Manual 

 

Spring 2025 

 

 

 

 

Department of Physics 

Western Illinois University 

 

 

Revised by Pengqian Wang 

 



Table of Contents 

 

Physics 214 Lab Report Guidelines 

1-3. RELLAB Paradoxes 

1) Bombs, Booms and Bursts of Light 

2) Pushing the Envelope 

 

3) Spacefriend 

4) Presidential Parade 

5) Runner on the Train 

6) Pole and Barn 

 

7) Detonator 

8) Joust 

9) Rising Manhole Cover 

4. Photoelectric Effect and Planck’s Constant 

5. Emission Spectrum of Hydrogen 

6. Measurement of the q/m Ratio of the Electron 

7. Electron Diffraction 

8. Nuclear Counting and Statistics 

9. Graphical Schrödinger Equation 

  



Physics 214 Lab Report Guidelines 

 

Students are required to read the lab manual, and collect their questions before coming to the 

lab. Each student should have a notebook for the lab. Please bring with you some common 

stationery to the lab, including a pen, a calculator, a flash drive, and a camera. 

Laboratory report for each lab is due in one week following the date of the completion of the 

experiment, unless otherwise arranged. No absences from the labs or late lab reports can be 

accepted, except for pre-approved and extenuating circumstances. 

All text portions of the lab reports should be prepared using Microsoft Word or a compatible 

word processor. All graphs in the lab reports should be prepared using Microsoft Excel or a 

compatible graphing program. Hand-drawing diagrams may be attached to the lab report. If you 

use a photo, please crop the photo so that only necessary information is shown. You should 

submit a printed hardcopy for the lab report. A sample student lab report will be posted online. 

All lab reports should have the following organizational structure: 

1) Title page — Title of the lab experiment, date of the lab experiment, your name, group 

members’ names, course number, and instructor for that lab. 

2) Introduction — Explain the purpose of the experiment. Make a brief statement of what 

the experiment is about.  Explain possible applications of the physics you learn in that lab. 

3) Background principles — Include and explain any relevant background physics concepts 

and/or mathematical equations used in data collection and experimental analysis. Include 

here any derivations asked for in the manual which are necessary for analyzing the data. 

4) Experimental procedures — Include a complete description of the instrumentation used, 

the manner in which you used it, and the quantities to be measured. Sketch the equipment 

detail and the experimental setup. You may also include cropped photos. The sketches 

and photos should be supplemented with legible notes. Identify the strengths and 

weaknesses of the experimental setup, including any special cautions observed. Describe 

the chronological procedure of how you conduct the experiment, including demos 

performed by the instructor, problems encountered in the course of the lab, and how you 

overcame them. 

5) Results and discussion — Present your experimental findings, along with relevant data 

tables, data printouts, graphs, spectra, or images obtained. Describe how you analyze and 

interpret your data in light of the theory developed in part 3 to reach your final results. 

Answer questions that are raised in the lab manual. 

6) Conclusions — Summarize the major findings and accomplishments of your experiment. 

Explain any errors incurred or discrepancies with theory, and identify where further work 

may be applicable. 

 



Physics 214 Computer Simulations: Relativity Paradoxes 

The physics of special relativity is the study of very fast but uniform motions. At a high 

speed that is comparable to the speed of light, velocity, length, time and energy are all dependent 

on the observer’s motion relative to the system he or she is observing! On the other hand, the 

laws of physics, and the “cause and effect”, should not be dependent on who is observing. For 

example, if a bird dies for one observer, all observers should see that the bird dies. Also if a 

hunter fires a gun, which then causes the bird to die according to one observer, all observers 

should agree about the sequence. The most important law that is not relative is the wave equation 

for electromagnetic radiation in a vacuum. That law sets the speed limit, c = 3.00 × 108 m/s, for 

the universe. All the odd consequences of relativity are in fact a result of the non-relative nature 

of physics laws in general, and for electromagnetic radiation in particular. 

The physics of special relativity have been established through numerous experiments, such 

as the observed time dilation of relativistic subatomic particles, the Doppler shift of light 

frequency, and the stunning and destructive fact that E = mc
2, which scientists have used for 

good (nuclear fusion and fission) and bad (atomic weapons). In spite of the numerous tests 

undertaken to demonstrate the validity of the theory, it is not easy for us to do a hands-on 

experiment on relativity because of the high velocities required. However, the best way to 

experiment with relativity is to do it like Einstein did — by thought (German: Gedanken) 

experiment. With a little help from our computers, you will think through some of the most 

famous paradoxes in special relativity, and hopefully gain an understanding of how velocities, 

lengths and time change for motions near the speed of light. 

You need to learn how to use the program RELLAB in the first lab. They are quite easy for 

young people. You will become experienced after some practice. Your lab report should follow 

the general guidelines as described in the beginning of the lab manual. Especially you should 

include the following: 

(a) Sketches of the scenarios. Cropped photos are preferred. 

(b) Descriptions of the scenarios. 

(c) Your analyses of the paradoxes prior to conducting the simulations. You get the credit no 

matter your guess is correct or wrong. 

(d) Answers to the questions posed in the manual. 

(e) The final resolution of the paradoxes. 

 

Good luck and enjoy! 
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Physics 214 Lab 4 

 

Photoelectric Effect and Planck’s Constant 

 

In the early days of radio the transmitter consisted of a simple electric spark which produced 

radio waves. The radio waves were detected by a coil of wire placed some distance away from 

the spark. By turning the spark on and off, “wireless” radio communications using the Morse 

telegraph code were made possible. The photoelectric effect (Fig. 1) was discovered when 

physicist Heinrich Hertz, who was working to improve radio broadcasting, discovered that the 

air between the electrodes of a spark gap became a better conductor when lit by ultraviolet light 

from an arc lamp. In 1888 it was discovered that shining an ultraviolet light on a negatively 

charged zinc surface caused the zinc to lose its charge quickly. A neutral zinc surface became 

positively charged under the light. If the zinc was initially positively charged, the charge was 

unchanged by light. Somehow light was affecting the electrostatic charge of the zinc. 

Today we understand the photoelectric effect as the ejection of electrons from a surface due 

to light striking the surface. The main features of the photoelectric effect are: 

1. The quantity of ejected electrons (photocurrent) depends on the light intensity. 

2. The light intensity does not affect the kinetic energy of the electrons. 

3. No electrons are ejected below a certain frequency (energy) of light. 

4. The kinetic energy of the electrons has a maximum value. 

5. The kinetic energy of the electrons depends on the frequency (energy) of the light. 

Each “investigation” in this lab is a separate mini-experiment designed to test one of these 

statements. The last statement is particularly important, because it leads to Planck’s constant. 

This constant is one of the fundamental constants of the universe. The last thing that you will do 

in lab today is to measure Planck’s constant. 

Use the scientific method when you work. Observe what happens while you change one and 

only one thing at a time, then draw your own conclusions based on your data. Think about what 

happened. Then write down your thoughts in your lab book. 

 

The apparatus: 

The photocell (Fig. 2) contains a clear window, a photocathode, and an anode. The 

photocathode is the surface from which electrons (the photoelectrons) are emitted. The ejected 

electrons flow into the anode and form an electric current (the photocurrent) which is measured 

on the ammeter. Applying a reverse bias or stopping voltage (charging the anode negative and 

the cathode positive) prevents the electrons from reaching the anode. The maximum kinetic 

energy of the electrons in eV is found by multiplying the stopping voltage by the electron charge. 



 

4-2 

 

 

 

Fig. 1: Ejection of a photoelectron   Fig. 2: General photocell setup 

 

Laboratory setup: 

Your apparatus consists of a box (Sargent-Welch Cat. No. 2120) containing the phototube 

and a voltage divider circuit used for controlling the voltages on the anode and cathode. You will 

be given two photocell boxes. They are identical except that one contains a color filter wheel, 

and the other contains an aperture wheel. (“Aperture” is the physics talk for “small hole”.) The 

circuit diagram of the box is printed on its front panel. The diagram shows how to connect the 

phototube to the power supply and meters. 

For measuring the photocurrent, we recently bought some sensitive digital multimeters 

(Tektronix DMM 4020), which have a current resolution of 1 nA, a voltage resolution of 10 µV, 

and a resistance resolution of 1 mΩ. These multimeters have replaced the large antique 

galvanometers, which started to function improperly in the last few years and have been removed 

from our lab. When using the digital multimeters, please keep in mind that for measuring very 

small current (a few nanoamperes), the multimeter itself may have some dark current flowing, 

which should be treated as the actual zero point. 

A mercury lamp will be used to illuminate the phototubes. A flashlight, a diffraction grating, 

a spare color filter wheel, and a red filter are also provided. 

 

Apparatus setup: 

1. Turn on the mercury vapor lamp right away so that it can warm up. Close the little slit 

shield. Aim the lamp so that it does not shine in anyone else’s experiment. Do not stare at the 

mercury lamp. It emits a lot of ultraviolet light which can harm your eyes. 

2. Turn on the power supply. Before you hook up the power supply to anything else, use the 

digital multimeter to set the voltage to approximately 3 V. Do not adjust the power supply 
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voltage knob again during the experiment. After the power supply is set to 3 V, make all voltage 

adjustments with the knobs on the photocell box. 

3. Carefully examine the circuit diagram on the photocell box and compare it with the 

diagram below. Make sure that you understand how this circuit works. Find the voltage divider 

that controls the voltage on the phototube. Where, on the tube, is the current that you will be 

measuring? And the voltage? 

 

Fig. 3: Wiring diagram of phototube box 

4. Set up the photocell box with the apertures. Turn off the power supply, then hook up the 

circuit as shown on the phototube box. Adjust the measured voltage to zero volt, or reasonably 

close, using the coarse and fine voltage adjustment knobs on the phototube box. Don’t touch the 

power supply knob. 

5. Place the mercury vapor lamp close to the photocell (but not in touch with the photocell 

because of heat). Position the lamp so that you won’t be staring into it and so that it won’t be 

aimed at someone else’s apparatus. Open the little slit shield and adjust the lamp so that the 

brightest light falls on the phototube. 

 

Investigation 1: Does the quantity of ejected electrons depend on the light intensity? 

Set the voltage between the cathode and anode to zero, or as close as you can get. Adjust the 

distance between the lamp and the photocell so that the photocurrent is not more than about 1000 

nA. Measure the photocurrent as a function of the AREA of the aperture, in square inches. Graph 

this function in your lab book. Interpret your graph. The intensity is proportional to the aperture 

area. Does the photocurrent depend linearly on intensity? 

In your lab book: Explain what you did and what you thought about the results. Show your 

data in table and graph form. Use at least half of the page to make your graph. Interpret your data. 

Answer this question in your lab book: Does the quantity of ejected electrons depend on light 

intensity? Base your answer on your experimental results. 
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Investigation 2: Does the maximum kinetic energy of the electrons depend on the light 

intensity? 

If you gradually apply positive voltage to the photocathode, the photocurrent (number of 

ejected electrons) will decrease. Eventually, none of the photoelectrons will have enough energy 

to escape. The stopping potential Vs is the voltage which just causes the photocurrent to become 

zero. The maximum kinetic energy of the photoelectrons (in electron volts) is Kmax = e Vs, where 

e is the charge of the electron. 

Your job is to measure Vs for each aperture size. Remember, use AREA, not diameter. 

In your lab book: Explain what you did. Show your data in table and graph form. Interpret 

your data. 

Answer this question in your lab book: Does Kmax depend on light intensity? Be sure you 

base your answer on your experimental results. 

 

Investigation 3: Is there a maximum wavelength (minimum frequency) of the light? 

As you may have guessed, you’re going to test this by shining different wavelengths of light 

on the phototube. First, you need to understand what the color filters are doing to the spectrum of 

light from the mercury lamp. 

You can observe the mercury spectrum by closing the slit shield, then using a diffraction 

grating to see the spectrum. Observe the effect of the color filters on the light from the mercury 

lamp. Without any filters, the brightest spectral lines are yellow-orange, green, blue, and purple. 

Now hold a spare color filter wheel between the lamp and the diffraction grating and look 

through the grating again. Which spectral lines are eliminated by each filter? 

You may need to get a fairly “pure” red light in order to test whether long visible 

wavelengths can eject electrons. Look at the flashlight through the diffraction grating. The 

spectrum of the flashlight is continuous with no lines. It is strongest in the red. Look at the 

flashlight’s light coming through the filters with the diffraction grating. Using the red filter in 

combination with the spare color wheel, find the combination that gives the “purest” red light 

(Fig. 4). In your lab book: Record what you did and what you saw. Note which lines or parts of 

the continuous spectrum were eliminated by each filter or combination of filters. 

 

Fig. 4: Obtaining a red light 
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Now you’re ready to complete this investigation. Change boxes so that you are now using the 

phototube box with the color filters on it. Set the voltage equal to zero using the knobs on the 

box. Don’t touch the power supply! Shine the mercury lamp on the phototube and note the value 

of the photocurrent, using each filter and the open (no filter) position of the wheel. The filters are 

labeled according to their cutoff wavelengths of light, in nanometers (1 nm = 10-9 m). Recall that 

frequency = c/λ and that red = long wavelength, purple = short wavelength. 

Remove the mercury lamp and shine your “pure’ red light (577 nm + red filter) onto the 

phototube. What happens? Interpret your results. 

In your lab book: Record your measurements of photocurrent vs. wavelength. Answer the 

question: Is there a maximum wavelength (minimum frequency) of the light capable of ejecting 

electrons? If so, approximately what is its value? Justify your conclusions by referring to your 

data. 

 

Investigation 4: Does the kinetic energy of the electrons have a maximum value? 

Set up the mercury light in front of your photocell, with the slit open. Measure and graph the 

photocurrent vs. voltage for the case with no color filter. Find the stopping potential (the voltage 

at which the photocurrent becomes zero). 

In your lab book: Explain what you did. Show your data in table and graph form. Interpret 

your graph. 

Answer this question in your lab book: Is there a maximum kinetic energy of the electrons? If 

so, what is its value? 

 

Investigation 5: Does the maximum kinetic energy of the electrons depend on the 

wavelength of the light? 

Now that you know that the kinetic energy has a maximum, measure Kmax as a function of 

wavelength. (Basically, repeat investigation 4, using all of the color filters.) Obtain Kmax from the 

stopping potential (Kmax = eVs) and graph Kmax as a function of frequency and of wavelength (2 

graphs). 

In your lab book: Explain what you did. Show your data in table and graph form. Draw this 

graph as large and carefully as you can, using a full page of your data book. Interpret your data. 

What does it mean? 

Answer this question in your lab book: Based on your data, how does the kinetic energy 

depend on the wavelength and frequency of the light? 

 

Investigation  6: What is the value of the Planck’s constant? 
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Albert Einstein successfully explained the photoelectric effect as the transfer of kinetic 

energy between light and electrons. The energy of a particle of light is E=hν, where ν is the 

frequency of the light. The proportionality constant h is called Planck’s constant, and is one of 

the fundamental constants in physics: h=6.63×10-34 J s = 4.14×10-15 eV s. 

The maximum energy of the photoelectrons is 

Kmax= hν − W, 

where W (called the work function) is the amount of energy needed to separate an electron from 

the photocathode. 

To measure h and W, use your data from investigation 5. The equation for Kmax is the 

equation of a line of the form y = mx + b where h and W are the slope and intercept of the line. 

Read the values of h and W off of your graph of Kmax vs. ν. Then take the accepted value for h 

and your best guess for W, and plot a new line of slope (accepted value of) h and intercept W on 

the same graph as your data. Label the experimental and theoretical lines. 

In your lab book: Interpret your graph. How close is your measured data to the theoretical 

line? 

Answer these questions in your lab book: How well were you able to obtain the value of h? 

Suggest some ways to get a more accurate value. 

 

Overall Conclusions: 

When you have finished all of the investigations, stop and reflect on what you have done. 

Are you satisfied that the experiments confirm the physical principles under investigation? Why 

or why not? Is there anything that you would do differently? Are there any lingering questions in 

your mind? Write a little bit about these things in your lab book. The experiment isn’t complete 

until you have done this. 
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Physics 214 Lab 5 

 

Emission Spectrum of Hydrogen 

 

I. Introduction 

One of the most interesting phenomena in nature is that elemental substances such as sodium, 

mercury or hydrogen absorb and emit light at a number of well-defined frequencies. These 

atomic absorption and emission spectra, as they are called, became one of the most important 

tools used to investigate the quantum mechanical nature of matter at the atomic scale. They were 

the motivation behind the development of the Bohr model of the hydrogen atom. They continue 

to be a significant test for the more sophisticated atomic and molecular models used today, and 

are used in chemistry, astrophysics and form the basis of laser technology. 

For elemental hydrogen, H, the spectrum is very orderly, and can be grouped into series of 

spectral lines, with each series showing the same pattern of lines. The series are labeled ns = 1, 2, 

3, etc., in order of increasing wavelength, and the lines in each series can be numbered from n = 

ns+1Ø¶, also in order of increasing wavelength. The Rydberg formula expresses the wavelength 

of the spectral line as a function of the series and line number. 
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where R =.01097 nm-1 is the Rydberg constant. The Balmer formula describes the spectral series 

for which ns= 2. 
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This series includes the visible wavelengths of light. While these formulas provide an accurate 

expression of the entire spectrum of hydrogen, they offer no physical explanation for why the 

spectral lines are distinct, why the wavelength depends on the difference between the two 

numbers, or what determines the value of the Rydberg constant. 

Niels Bohr developed a model for the hydrogen atom that was a variation of the Rutherford 

planetary model of atoms. In this model, Bohr postulated that the electron in its motion is 

governed by the electrical attraction with the proton in the nucleus, but that it is restricted to 

certain circular orbits having quantized angular momentum, ,ℏnL = , where n is an integer, and 

ℏ  is the Planck’s constant. Although Bohr could not explain why the angular momentum should 

be quantized in this way, his model went a long way toward explaining the behavior of electrons 

in atoms. 
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The Bohr postulate about quantized angular momentum leads to a prediction that the electron 

in orbit around the hydrogen nucleus is allowed to have only certain, well-defined energies, 

given by the formula 

.
2

0

n

E
En =       (3) 

The orbital energies are labeled from n = 1, which is the ground state, or lowest energy level, up 

to n =¶, which corresponds to a free electron that is not bound to the hydrogen nucleus at all. 

The lowest energy is the ground state energy, E0 = −13.6 eV. The electron is allowed to have 

these energies, and no other, while in orbit around the nucleus. 

Working from this model, we can explain why hydrogen absorbs light only at certain 

frequencies, and, when excited, emits light at those same frequencies. As we have shown in the 

Photoelectric Effect experiment, light of frequency ν consists of photons, labeled γ, each of 

which has the energy Eγ = hν. Under most circumstances, the electrons in a gas can absorb only 

one photon at a time. If the electron is initially in the state n = 1, the photon it absorbs must give 

it an energy corresponding to the energy of the states n = 2, 3, etc.. Otherwise, the photon cannot 

be absorbed at all. Therefore, the photon energy Eγ = hν must be equal to ∆E1n, the energy 

difference between the 1st orbital energy and the nth orbital energy. If the electron in the atom is 

excited to a higher energy level by some means, it will eventually give up its energy as a single 

photon with energy equal to ∆Enu,nl, the energy difference between the higher energy level, nu, 

and the final energy level, nl. The different series of spectral lines correspond to the set of all 

possible transitions to each of the different final states. For instance, the Balmer series in 

hydrogen involves all the possible transitions down to the n = 2 orbital state. A massive number 

of such transitions are responsible for the light we see from the hydrogen vapor lamp. 

In this experiment, we will use a diffraction grating and a spectrometer to resolve the 

hydrogen light into its visible spectrum, and determine the wavelength of the spectral lines as a 

function of the initial orbital energy level, nu. The visible spectral lines are part of the Balmer 

series, for which we know that n = 2, and we will plot 1/λ vs. 1/ nu
2 to verify that this is a linear 

relationship, and also predict the value of R, the Rydberg constant. In doing so, we will have 

indirectly demonstrated the quantum mechanical nature of the electronic behavior in hydrogen. 

We will also use one of the spectral lines from the mercury vapor lamp of known wavelength to 

verify the grating spacing guaranteed by the manufacturer. 

 

II. Apparatus and procedure 

A picture of a typical student spectrometer is shown in Fig. 1. The one you are going to use 

in the lab may be slightly different. A diagram of the light path in the spectrometer is shown in 

Fig. 2. 
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Fig. 1 A Spectrometer 

 

Fig. 2 Diagram of a spectrometer 

When using the spectrometer special care must be taken to reduce as much as possible any 

extraneous light so that all four visible lines in the hydrogen spectrum can be seen. It is a 

common mistake to identify the strong blue-violet line as the much weaker violet line. You may 

need to increase the slit width in order to observe the violet line. Remember, however, that the 

wider the slit, the greater the error in determining the diffraction angle. In general, you should 

use the minimum slit width at which the spectral line can be observed in order to obtain precise 

and accurate results. 

Make sure that the diffraction grating is placed on the center stand so that the light from the 

telescope is incident normally upon the grating. For normal incidence, the positions of the 

spectral lines are given by 

,sinθλ dm =       (4) 

where m  is the spectral order, λ is the wavelength of the spectral line, d is the distance between 

rulings on the grating, i.e., the “grating constant” and θ is the diffraction angle. The grating has a 

spacing of 600 lines/mm. 

Question 1: Derive the expression θλ sindm = for light passing through two slits separated by a 

distance d using Fig. 3. Assume that d <<L, the distance from the diffraction grating to the point 
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of measurement. You should calculate the path difference for light passing through the two slits 

and then impose the condition for when the light will interfere constructively. 

 

Fig. 3 Light diffraction from a grating 

The angle θ is measured from the m = 0 spectral line. However, in order to decrease the 

percentage error of our measurement of the angle, we will measure the angle for the m = 1 

spectral line of the same wavelength λ both to the right and to the left of the m = 0 line and take 

the difference between the two recorded angles. Dividing by 2, we then obtain θ, but with an 

error ½ as large as if we had measured θ from the m = 0 line. 

 

III. Determination of the grating constant 

Each year the spectrometers used in this lab can be somehow different. There are three tricks 

which can help us to observe the spectral lines more clearly. 1) If necessary use double-sided 

tapes to secure the spectrometer on the table. 2) Adjust the slit width. 3) Finely shift the lamp left 

and right so that the spectral lines appear the brightest. 

Now, using a line of known wavelength, let’s test the information given by the manufacturer 

about the grating. As a standard for calibrating, use one of the strong lines of mercury (See the 

photoelectric effect experiment). Watch out that you use a singlet line (the 546.1 nm green one, 

for instance), and not a doublet (the strong yellow line). Take the first- and second-order 

readings on both sides of the zero-order, and from these determine the grating constant d and the 

number of grooves per unit width. As usual, express your result to no more significant figures 

than are justified by your data. Compare your result with that obtained from the manufacturer’s 

value given on the grating. Use a table as follows: 
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Line-color from mercury spectrum  

λ (nm)  

Spectral order m 1 2 

Reading (deg.) – right   

Reading (deg.) – left   

Difference (=2θ) (deg.)   

θ (deg.)   

sinθ   

Grating constant d (nm)   

Grating lines per mm (experimental)   

Grating lines per mm (manufacturer)   

 

Make sure that you record the error in your measurements and calculate the error in your 

experimentally determined value of d. With due consideration to the uncertainty in your result, 

does your result agree with that of the manufacturer? If not, what is a likely reason for the 

difference? 

 

IV. The emission spectrum of atomic hydrogen 

Now, replace the mercury lamp with the hydrogen gas lamp. A new hydrogen lamp emits 

pinkish light. Measure 2θ for m = 1 for each of the four visible lines in the spectrum. The short 

wavelength lines will be closest to the m = 0 line. Calculate the wavelengths of the lines you can 

see, using the formula given in part II. Then plot 1/λ vs. 1/ nu
2, using your experimentally 

obtained values of θ and the value of ν given in the following table for each line. What shape is 

the curve expected to exhibit? Use a table as follows. 
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Hydrogen line-color Red Blue-Green Blue-Violet Violet 

Grating constant d (nm) 

(Use measured results.) 

 

Reading (deg.) – right     

Reading (deg.) – left     

Difference (=2θ) (deg.)     

θ (deg.)     

sinθ     

λ (nm) (experimental)     

For graphing: Quantum 

number nu. 

3 4 5 6 

1/ nu
2     

1/λexp     

 

Use the Balmer equation to show that the y-intercept is R/4. Find R from your graph, then use 

it (a) to find the short wavelength limit of the Balmer series, and (b) in conjunction with the 

Rydberg equation and the Einstein relationship Ephoton= hc/λ to determine EI, the ionization 

energy of hydrogen which is required to remove an electron in the ground state. In a table, 

compare the two results with the published values. 

Question  2: Why can’t we see the transitions to the n = 1 ground state? 

Question 3: What is the mechanism in the hydrogen lamp which causes the hydrogen atom 

electrons to be in the higher energy orbital states from which they fall, creating the spectral line 

pattern you see through the diffraction grating? 
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Physics 214 Lab 6 

 

Measurement of the q/m Ratio of the Electron 

 

Measuring the charge-to-mass ratio of charged particles is fundamental to our understanding 

of physics. This ratio allows high energy physicists to identify different kinds of particles. The 

q/m ratio is used to sort ions in mass spectrometers, which are used for chemical analysis. 

Historically, the q/m ratio was used to prove that alpha and beta rays consisted of two different 

kinds of particles. 

When a charged particle enters a magnetic field, the force on the particle is given by: 

F = qv×B.        (1) 

When the velocity is perpendicular to the magnetic field, the force is perpendicular to the 

velocity and is therefore a centripetal force. The motion of the particle is circular and is 

described by the equation 

qvB
R

mv
F ==

2

.       (2) 

If you solve this equation for R, you will see that the radius of the circle R depends on the 

momentum, charge, and mass of the particle. If the kinetic energy of the particle is 

,
2

1 2
qVmvK ==  where V is an accelerating voltage, we obtain the equation 

.
2

22
RB

V

m

q
=        (3) 

This equation is very useful. While one cannot use it to measure q or m independently, it is often 

enough to measure the ratio q/m. Chemists use q/m to identify ionized atoms vaporized from an 

unknown sample in a mass spectrometer. High energy (particle) physicists use q/m to identify 

exotic subatomic particles. Atomic physicists use q/m to determine how many electrons are 

missing from an ion. Nuclear physicists use q/m for nuclear isotope identification and separation. 

The q/m ratio has even been used to sort bulk powders or pellets by particle size. 

You will be measuring q/m for the electron because the electron is the most easily produced 

charged subatomic particle. In this experiment you will observe electrons as they circle in a 

magnetic field and then measure the radius of their path in order to get q/m. Finally, you will 

compare your result with the accepted value given in your text. 

 

Apparatus: 
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Fig. 1 e/m apparatus 

The apparatus for the experiment is shown above. A small electron gun is placed inside a 

large vacuum tube which is filled with hydrogen gas at a pressure of 10-2 torr. (1 torr = 1 mm Hg; 

1 atmosphere = 760 torr.) As the pressure in most vacuum tubes is 10-7 torr or less, this tube has 

a very high gas pressure for a vacuum tube. The electrons collide with and ionize the gas in the 

tube, causing the path of the electron beam to be visible. 

To do the experiment properly, you need to know how the electron gun works: When a wire 

is heated, it becomes surrounded by a cloud of electrons. If you put a negative charge on the wire 

and a positive charge on a nearby electrode (the anode), the electrons are accelerated. The anode 

has a hole in it to let the electron beam go through. The kinetic energy of the electrons depends 

on the voltage difference between the filament and the anode, which you control. Between the 

filament and the anode is the Wehnelt cylinder, as shown in the figure below, which is an 

electrode that helps to focus the beam of electrons The Wehnelt cylinder voltage should be zero 

for this tube. 

 

Fig. 2 Electron gun configuration 

The cathode ray tube is surrounded by a pair of Helmholtz coils. Helmholtz coils are two 

parallel circular coils of wire that are separated by a distance that is equal to their radius. This 

geometry causes the magnetic field to be nearly uniform anywhere in the region between the 

coils. The equation for the B field of Helmholtz coils is: 
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Here n is the number of turns, I the current, and a the radius of the coils. 

 

Before you get into the laboratory: 

Please answer these questions: 

Question 1: Try to derive Eqs. 3 and 4. Show the derivations in your lab book. Hint: You can 

find this derivation already worked out in many introductory physics textbooks. Look under 

“Magnetic Field from a Circular Coil of Wire.” If you refer to or copy from a book, give its 

bibliographic reference. 

Question 2: Use Eq. 4 to calculate the expected B, in Teslas, for your magnet using magnet 

currents of 1, 2, and 3 amperes. For these coils, n=130 turns and a =15 cm. The constant 

µ0=4π×10-7 N/A2. Notice that in Eq. 4, B=cI where c is a proportionality constant. If you figure 

out the value of this constant ahead of time and write it in your book, you’ll save a lot of time 

when you get into the laboratory. 

Question 3: Compare the size of the earth’s magnetic field (1/4 Gauss º2.5 ×10-5T) with your 

answers to question 2 above. Is the earth’s field going to affect your experiment? Is there a 

simple way (there is!) to minimize the effect of the earth’s field? (Hint: think about vectors.) 

Question 4: Starting from Eqs. 3 and 4, derive an equation for the diameter of the electron beam 

circle as a function of magnet current. 

 

Apparatus setup: 

We recently replaced some e/m tubes and their control units which have served our 

department for tens of years. For the power supplies we used the original ones from Leybold, a 

German company. Power supplies are relatively durable and fairly expensive electronic devices.   

Hook up the apparatus as follows. DO NOT TURN ANYTHING ON UNTIL THE 

INSTRUCTOR HAS CHECKED THE CIRCUIT! The tubes can be damaged if the circuit is 

wrong. They’re very expensive. 



 

6-4 

 

 

Fig. 3 Circuit connection for the e/m experiment 

 

For the voltmeter and ammeter, use the digital multimeters (DMMs). Make sure that the 

input leads for the “ammeter” are connected in the correct places on the DMM, and that the 

buttons on the DMM’s are pushed to get the meters into the correct mode. The current in the 

magnet coils will be between 1 and 3 amps. The anode voltage must be between 150 and 250 

volts. 

After the instructor has checked the circuit, you may begin the experiment. Make sure that 

the knobs on the Leybold power supply are turned all the way down and check to see that the 

“380 V’ switch is in the up position. Turn on the power supply. As soon as the filament is 

glowing, turn the anode voltage up to 150 volts or so. You should see a blue beam coming out of 

the electron gun. You may need to turn off the ceiling lights. 

Turn on the magnet. If the electron beam bends around in a circle, you’re fine. If the electron 

beam goes the wrong way, turn the magnet off and switch the polarity of the magnetic field wires. 

If the electron beam winds into a spiral instead of a circle, rotate the tube in its brackets and/or 

rotate the apparatus on the table until you get a circle. 

 

Using the virtual-image projector: 
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These are handy little gizmos that let you measure the radius of the electron beam by sticking 

the virtual image of a ruler inside the tube! The rulers on the virtual image projectors are divided 

into millimeters. The gap in the center of the ruler is 2 cm wide. Set the projector up like this: 

 

Fig. 4 Using the virtual-image projector 

 

Investigation 1:  

Get the electron beam going into a nice circle. Measure the circle with your scale-projection 

apparatus. The electron beam spreads out as it travels. Use the outside edge of the beam when 

you measure the radius. 

Question 5: Is the beam path circular, or a little egg-shaped? By how much? Be quantitative. 

Give an answer in millimeters and in % deviation from the average radius. This is a quick check 

on a possible source of experimental error. The beam path should be nearly circular. If it isn’t, 

make sure that you keep the angle of your virtual image ruler constant in subsequent 

measurements. 

 

Investigation 2: 

Measure the diameter of the electron beam circle as a function of magnet current for a 

voltage near 200 V. Start from the minimum current that produces the largest circle. Increase the 

current by about 0.2 A/step and measure the diameters of the circles. Measure at least 4 different 

currents. Do this carefully.  

Question 6: Does the equation that you derived in Question 4 predict the experimental curve 

correctly? To answer this question, plot your measured diameters on the vertical axis of a graph 

and the magnet current on the horizontal axis. Then calculate (using the equation derived in 

Question 4) the diameter of the beam path for a few values of the current and plot the calculated 

values on the same graph as your experimental data. Draw a curve through the calculated points, 
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but not the experimental data. Comment on how well the theory and data match, or why they 

don’t match. You must use words and sentences to discuss your graph. 

Investigation 3: 

Measure and plot the diameter of the circle as a function of the anode voltage, using a fixed 

magnetic field at a current of about 1.5 A. Keep the anode voltage between 150 and 250 V, and 

use about 20 V/step. 

Question 7: Does Eq. 3 correctly predict the experimental results? Support your answer by 

referring to your data. (Hint: Treat q/m as a constant, and consider doing an analysis similar to 

that in Question 6 above.) 

 

Investigation 4: 

This may be completed outside of lab, as it involves discussing and thinking. Use your data 

to find the best value for q/m that you possibly can. Discuss and compare your results and 

experimental errors with other laboratory groups. Record these discussions in your laboratory 

notebooks, giving full credit for ideas where credit is due. Example: “Mortimer suggested that 

the spread of the electron beam could change the results by 3%.” Finally, compare your best 

value with the accepted textbook value and discuss any major differences, 

 

Additional Questions: 

Please answer these questions briefly in your laboratory notebook. 

Question 8: Why does the beam spread out as it travels in the tube? Back up your answer with 

some physical reasoning. 

Question 9: Why do you get a spiral pattern when the tube is rotated? Hint: Think about the 

vector components of the initial electron velocity interacting with the magnetic field. 

Question 10: Calculate the speed of the electrons for the minimum and maximum anode voltages 

used. Express the speed in meters/second. Hint: These electrons are not relativistic. 

Question 11: (Optional, up to 10 pts. extra credit) Read up on gas discharges and find out why 

the electron beam appears blue. When you find out, please tell the rest of us. 
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Physics 214 Lab 7 

 

Electron Diffraction 

 

The fact that electron diffraction occurs at all conclusively proves that electrons are waves. In 
this lab you will be using a beam of electrons to produce diffraction patterns using crystals of 
either aluminum or graphite as the diffraction “gratings.” You will learn, how to analyze the 
diffraction patterns in order to measure the distance between the atoms in these crystals. 

The apparatus is fragile and decays with use. Do not turn on the apparatus until you have 
read and understood the preliminary theory and discussion and are ready to take data. 

 

Theory: 

Diffraction is a wave phenomenon that occurs whenever a wave passes through two or more 
slits. The slit width must be comparable to the length of the incoming wave. For water waves in a 
ripple tank, diffraction patterns can be produced by placing barriers in the water several 
millimeters apart. For visible light the slits of the diffraction grating need to be a few hundredths 
of a millimeter wide. For x-rays and electron waves the diffraction grating is formed by the 
layers of atoms in a crystal. In every case, the size of the slits must be comparable to the size of 
the wavelength. 

Like photons, electrons and other subatomic “particles” exhibit both wave and particle 
characteristics. The French physicist Louis de Broglie argued that electrons and photons should 
obey the same equations that relate energy and momentum to frequency and wavelength. 
Experimentation has shown de Broglie’s hypothesis to be correct, and therefore for electrons we 
can use 

λ

h
p =        (1) 

to determine the wavelength (called the “de Broglie wavelength”) of the electron. 

_______________________ 

Example: What is the wavelength of an electron with kinetic energy 50 keV? 

The kinetic energy K of this electron is 50 keV. The total energy is kinetic energy plus the rest 
energy, so that 

E= K + mc2 =50 keV + 511 keV = 561 keV. 

The momentum of this electron is given by 

./keV 5.231)keV 511()keV 561(
11 2222

c
c

mcE
c

p =−=−=  
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The de Broglie wavelength of the electron is therefore 

�

A 0.054nm 1036.5
keV 231.5

nmeV 1240 3 =×=
⋅

=== −

pc

hc

p

h
λ . 

Note that this wavelength is much smaller than the size of an atom (approximately 1 Å). 

_______________________ 

Now let us look at the phenomenon of diffraction. The following figure represents a wave 
being reflected from a series of crystal planes. For constructive interference to occur, the 
difference in the length of the two paths must be nλ, where n is an integer representing the order 
of the diffraction pattern. Otherwise, destructive interference occurs and no reflected wave is 
seen. 

 

Fig. 1 Geometry for Bragg diffraction 

Exercise 1: Do a mathematical proof, based on Fig. 1, using geometry to show that the path 
difference nλ is equal to 

θλ sin2dn =       (2) 

 When we use actual crystals, we find that there are many possible values for the plane 
separation d. The number of possible values depends on the arrangement of atoms in the crystal 
structure and the tilt of the crystal with respect to the incident electron beam. Fig. 2 shows how 
to tilt a crystal to get three different values of d. 
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Fig. 2 Crystal orientation and plane spacing 

Although Eq. 2 is simple, this variation in the plane spacing can make the experimental results 
complicated to interpret. To analyze our diffraction patterns, we need to consider the geometry of 
the apparatus and relate it to the Bragg diffraction geometry. 

 

Apparatus: 

The apparatus is shown in Fig. 3. It consists of a specially-built cathode ray tube. The 
electron gun in the neck of the tube shoots a beam of electrons towards an internal target. A set 
of electrostatic deflectors allows you to aim the beam at any point on the target. When the 
electrons strike a crystal or set of crystals in the target, the diffraction pattern appears on the 
screen at the front of the tube. 

 

Fig.3 Geometry of the apparatus 

The target contains both aluminum and graphite samples which are made of very thin films 
covering different quadrants of the target support grid. The target materials, like many everyday 
materials, are made of microscopic crystal grains that are packed tightly together. The crystals in 
the aluminum are very small, so that the electron beam strikes many randomly oriented crystals 
at once. Because of the large number of crystals, the electron beam is diffracted into a set of 
concentric cones. The “bottoms” of the cones appear as concentric circles on the CRT screen. 
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The crystals in the graphite sample are much larger. It is possible for the electron beam to focus 
on one individual graphite crystal, and in this case you will see a pattern of distinct spots on the 
screen. When you do the experiment, you will be measuring the radii of these rings and the 
distances between spots. 

The wavelength of the electrons is an important parameter in this experiment. You will 
control this parameter by adjusting the accelerating voltage in the tube. The voltage determines 
the kinetic energy (and hence the momentum and hence the wavelength) of the electrons. The 
kinetic energy of these electrons will be between 5 and 7 keV. 

Exercise 2: Are 7 keV electrons relativistic? Why or why not? Give a quantitative argument. 
(That means you must do the calculation.) 

Exercise 3: Use the equations for electron kinetic energy and de Broglie wavelength to derive the 
following expression for the wavelength of the electrons, where λ is in Å and V is in volts: 

�

A 
150
V

=λ .       (3) 

The number 150 has units of Å2V, so the answer will have the proper units. When you derive this 
equation, be very careful of units so that you don’t miss any conversion factors. 

 

Finding d: 

In your experiment you will be using graphite crystals and polycrystalline aluminum as your 
diffraction gratings. To find the parameter d in Equation (2), you need to know some things 
about crystals. 

The aluminum film in your apparatus is made of many microscopic “grains.” Each grain is a 
single crystal. The metal is made of many single-crystal grains stuck together in random 
orientations. 

 

Fig. 4 Grain structure of polycrystalline aluminum 

The following discussion shows you how to obtain the various possible values of the plane 
spacing d for a crystal. Crystals are made of regular arrays of atoms. The arrangement of atoms 
in a crystal of table salt is pictured below: 
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Fig. 5 Arrangement of atoms in a sodium chloride crystal 

A crystal lattice is the three-dimensional pattern of atoms making up the crystal. The unit cell 
is the basic three-dimensional “building block” of atoms that makes up the crystal. The lattice is 
made by stacking zillions of unit cells together. For many crystals (examples: NaCl, aluminum) 
the unit cell is a cube. Other crystals have different shapes of unit cells: 

 

Fig. 6a A cubic unit cell  Fig. 6b A non-cubic unit cell 

The lattice constant “a” of the cubic unit cell in Fig. 6a is simply the length of any edge of 
the cube. Any unit cell can be described by a maximum of three lattice constants and three lattice 

vectors. The unit cell in Fig. 6b has three lattice constants a, b, and c, all of which are different. 
The three lattice vectors are mutually perpendicular in Fig. 6a, but not in the crystal In Fig. 6b. 
The unit cell, lattice constants, and the angles between lattice vectors are determined mostly by 
chemical composition. We will not further consider the type of cell pictured in Fig. 6b. 

The distance between two planes of atoms in a crystal gives d, the diffraction grating spacing. 
As you can see from Fig. 2, it is possible to slice a crystal several ways. A real crystal will give 
us several values of d, depending on its orientation with respect to the electron beam. To find the 
possible plane spacing d we need to use three-dimensional geometry. 

From Fig. 6a it is apparent that the three lattice vectors are a= a i, b= a j, and c= a k for a 
cubic crystal. Now consider a possible plane as it cuts through the cube in Fig. 7: 
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Fig. 7 A plane cutting the cube 

The plane in Fig. 7 cuts the coordinate axes at coordinates 1/2 a, 2/3 b, and l c. The Miller 

indices of this plane will allow us to calculate d, which is the distance between the layers of 
atoms that form our diffraction grating. The general procedure for finding the Miller indices of a 
plane is: 

1. Find the intersections of the plane with the lattice vectors. 

2. Take the reciprocals of the intercepts. 

3. Find the smallest set of integers with the same ratios. 

In this example the reciprocals of these intercepts are 2, 3/2, and 1. The smallest set of integers 
with these ratios is 4, 3, and 2. These are called the miller indices (hkl) of this plane, and are 
generally written as (432). Some more examples are found in Fig. 8, along with their Miller 
indices: 

 

Fig. 8 Miller indices for different planes cutting the cube 

Exercise 4: Verify the Miller indices in Fig. 8 by applying steps 1, 2, and 3 described above to 

the four planes shown in the figure. 

A crystal is made by repeating the unit cell pattern over and over. For a cubic lattice the 
distance between adjacent parallel planes is given by 
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222
lkh

a
dhkl

++
= ,       (4) 

where a is the lattice constant, and h, k, and l are the Miller indices. (You’re not required to 
prove this, but you might like to try it for fun.) Substituting this equation into the diffraction 
equation (Eq. 2), we have 

222

sin2

lkh

a
n

++
=

θ
λ .       (5) 

This is the main equation for diffraction using a cubic crystal as a grating. 

The crystal structure of aluminum is actually FCC (face-centered cubic). A picture of this 
structure is given in Fig. 9. 

 

Fig. 9 A FCC (face-centered cubic) crystal 

In the FCC unit cell each cube has an atom at the center of each face as well as at the corners. 
Note that there are planes parallel to the faces of the cube and halfway between them. The 
electron waves reflected from the opposite cube faces will be out of phase with the waves 
reflected from the intermediate plane between these faces, and therefore no diffraction will be 
seen from the (100), (010), or (001) directions. Although we won’t present the details here, it 
turns out that for an FCC crystal no diffraction will occur unless h, k, and l are either all odd or 

all even. The innermost ring of your observed diffraction pattern will correspond to the 

orientation with the smallest allowed value of 222
lkh ++ , which is (111). The sequence 

continues with (200), (220), (311), (222), (400), (331), and so forth. Some rings may appear as 
“double”, but they are really two separate rings due to two different crystal orientations. 

Exercise 5: Make a table of possible values for (hkl) that diffracts the electrons for a FCC cubic 

lattice, as well as the corresponding values of 222 lkh ++ . Arrange the Miller indices (hkl) in 

the order of ascending 222 lkh ++ and verify the sequence of values given above. 

You will be measuring the radii of the ring patterns on the screen, then using geometry to 
find the diffraction angles. For small angles the amount of deflection of the beam may be 
approximated as θθ =sin . From the tube geometry shown in Fig. 3, the diffraction angle is

Lrhkl /2tan2 =≈ θθ .  Substitution into Eq. 5 gives 
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a
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=

λ
,       (6) 

which relates rhkl, the radius that you will measure, to the crystal lattice constant a. 

 

Part 1: Diffraction from polycrystalline aluminum 

The goal: Determine the lattice constant a (equivalent to measuring the distances between 
atoms) for polycrystalline aluminum based on your measurements of the diffraction patterns and 
your calculations of the electron wavelength. A picture of the apparatus is shown below. 

 

Fig. 10 The electron diffraction apparatus used in our lab 

Procedure: 

• Look at the cathode ray tube through the window in the side of the apparatus. Identify the 
deflectors and the target. Find and record the value of L (the target-to-screen distance) for your 
particular cathode ray tube. This is written on a label somewhere on or inside the apparatus. 

• Attach the microammeter to the back of the electron diffraction apparatus. 

• Turn the intensity and high voltage knobs all the way down (full counterclockwise). 

• Turn on the apparatus. 

• Set the high voltage at 6.00 kV, as exact as possible, and adjust the intensity until you see 
either a spot on the screen, or else the shadow of the target. DON’T LET THE TARGET 
CURRENT ECCEED 10 MICROAMPS. 

• If you see the shadow of the target, the beam is either severely defocused, or it is off the 
target entirely. Try defocusing and/or moving the beam to see the shadow of the target, then 
move and/or focus the beam so that you obtain a diffraction pattern of concentric rings on the 
screen. DO NOT LET THE UNDIFFRACTED BEAM SPOT SIT STILL ON THE SCREEN 
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OR YOU CAN BURN THE SCREEN. The pattern should resemble the following picture. You 
need to turn off the ceiling lights and use your flashlight for operation of the apparatus. 

 

Fig. 11 The diffraction pattern from polycrystalline aluminum 

• Quick check: Measure several different diameters of one ring to check for distortion of the 
image. If your measured diameters are within 1 or 2 mm of being equal, you don’t have to worry 
about distortion anymore. If the different diameters are not sufficiently equal, you’ll have to 
eliminate this source of experimental error with a suitable averaging procedure. 

• Once you have obtained nicely focused rings, measure the diameters of the rings with either 
the calipers or the clear plastic ruler. Record the results in a table and sketch the rings in your lab 
book. Sometimes you can only see part of a ring. In this case, measure it as best as you can. A 
pair of closely spaced concentric rings counts as two separate rings. 

• Test the diffraction patterns using another voltage, e.g., 8 kV. The electron beam will shift 
position when you change the voltage, so you will have to bring it back to a place where 
diffraction rings may be found. 

Exercise 6: Explain why the beam should shift position when you change the voltage. Yes, the 
energy of the beam changes, but why should this make a difference? What, specifically, is 
happening to the beam inside of the tube? 

 

Data analysis for polycrystalline aluminum: 

• Collect your data and results in a table and discuss your findings. Figure out exactly which 
crystal plane (or set of planes) is associated with each ring. Do this by listing the combinations of 
Miller indices that could possibly give you each ring. 

Example: You have two rings, labeled A and B. The ratio rA/rB can be used to check your 
guesses for the Miller indices by the following procedure: 

First, note that for this geometry, we have 
L

r
=≈ φφ tansin . Verify that you are justified in 

using this approximation by plugging in the values of r and L for your largest ring. How big is 
the error that you get by using this approximation? Why should you use your largest ring in this 
calculation? 
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Next, substitute r/L into the Bragg diffraction equation, and divide the equation for ring A by 
the equation for ring B: 

.
sin2
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Note that a is constant because it’s a property of the target crystal, L is constant because It’s a 
built-in property of the apparatus. Also, λ is a constant as long as you haven’t changed the 
accelerating voltage of the electron beam. Now Eq. 7 can be simplified, using the small-angle 

approximation 
L

r
=≈ φφ tansin and assuming nA=nB. 
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Now, if your guesses for the Miller indices were (200) and (220), Eq. 8 becomes 
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If this matches rA/rB, calculated from your measured diameters of these two rings, you have 
guessed the correct Miller indices. If the match is poor, try other combinations of (hkl) until you 
get a reasonable match. Keep in mind that it’s possible for you to miss a faint ring. This method 
of analysis will catch such errors. 

• Once you have identified the correct sets of Miller indices for your observed rings, sketch 
figures showing the crystal planes that are producing the rings that you see. These sketches 
should be similar to Fig. 8 above. Be quantitative when you do this. Use the Miller indices to 
figure out where the intercepts are. 

• Once you know the Miller indices, calculate the lattice constant a for aluminum using your 
data. Calculate the value of a for each voltage and compare it with the accepted value of a= 
4.04958 Å obtained from x-ray diffraction measurements. 

• Do an error analysis. Note that this is “error,” not “mistake.” Estimate quantitatively the 
quality of your measurements. How accurately could you determine a? How much uncertainty 
did you have in your measurement, in Ångströms? Where could this error have reasonably come 
from, and how much could each source of error contribute to the total error? Hint: Look at how 
changing the voltage changes the overall size of the rings. You may want to graph lattice 
constant vs. voltage and play with your data to look for a systematic error. 
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Part 2: Single-crystal diffraction using pyrolytic graphite 

Unlike a polycrystalline mass which produces diffraction rings, a single crystal placed in the 
electron beam will produce a set of spots on the screen. The number, intensity, and pattern of the 
spots depend on the internal symmetry properties of the crystal and the order n of the diffraction. 
The unit cell of graphite is hexagonal, as in Fig 12. 

 

Fig. 12 Hexagonal crystal structure 

The hexagonal crystal is most easily described by using the a, b, and c axes shown in the figure. 
Note that the a and b axes are 120 degrees apart. Pyrolytic graphite is a polycrystalline form of 
carbon with strong preferred orientations. Its structure can be thought of as a stack of single 
crystals which are randomly oriented about the c axis but with a preference for parallel c axes. 
Since 6 kV electrons will penetrate the target to only a few hundred Ångströms, an extremely 
thin graphite target is used. The graphite crystals are sufficiently wide that it is possible for you 
to find a place where the electron beam is striking a single crystal. 

 

Procedure: 

• Set the tube voltage to 6 kV, and keep the beam current below 10 µA. Search for the 
graphite pattern. This may be difficult as the graphite targets tend to burn away with use. There 
isn’t much graphite left in these tubes, so treat it with care. Keep the beam current low, and take 
your measurements quickly. Move the beam off of the graphite as soon as your measurements 
are done. Do not leave the electron beam on the graphite any longer than necessary. 

• The graphite pattern will resemble the pattern shown in Fig. 13. If you see rings made of 
little spots, you’re hitting more than one graphite crystal. Move the beam slightly. Once you have 
a single-crystal pattern, record the diameter (3 measurements) and order of each concentric 
hexagonal pattern, taking your measurements from the points of the hexagons. In deference to 
the fragile targets, taking the measurements for only one accelerating voltage is enough. 
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Fig. 13 Diffraction pattern of graphite 

IMPORTANT: When you are finished with the apparatus, turn the high voltage down before 
turning it off. This allows the high voltage capacitors in the power supply to discharge, thus 
avoiding damage to the tube and power supply. 

 

Data Analysis: 

The diffraction pattern for pyrolytic graphite is hexagonal, but rotated 30° with respect to the 
original lattice. The innermost hexagon corresponds to n=1, the next to n=2, etc. The lattice 
constant can be found from Eq. 2 where d = a cos30°, so that 

.
30cos °

=
r

Ln
a

λ
      (9) 

Here r is the distance from the center to a point of the hexagon. Using Eq. 9, calculate the value 
of the lattice constant for each order (n=1, 2, 3, etc.) of diffraction. Compare your value with the 
accepted value of a = 2.4612 Å. Estimate your errors in the same manner as in Part 1. Collect 
your data in a table and discuss your findings. 

 

Final Summary: 

In the “conclusions” section of your lab report, summarize your results. Some suggestions: 
Sketch the diffraction patterns for aluminum and graphite. State which diffraction rings were 
observed. State your best values for the lattice constants, and compare them with the actual 
values. Elaborate on the physics that you observed. Write down your overall impressions of the 
experiment, and how you would change it to improve your results. 

 

References: 

Kittel, Introduction to Solid State Physics, any edition, Wiley. 

Meiners, Eppenstein, Oliva, and Shannon, Laboratory Physics, 2nd ed., Wiley, 1986 

Taylor and Zafiratos, Modern Physics for Scientists and Engineers, Prentice-Hall, 1991. Pay 
particular attention to Fig. 7.3 (b) on page 153. 
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Weidner and Sells, Elementary Modern Physics, Sec. 5-1 through 5-5. Especially note Fig. 5-7 
for comparison with your data. 
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Physics 214 Lab 8 

 

Nuclear Counting and Statistics 

 

In this lab you will be using a Geiger-Müller counter to measure some of the characteristics 

of particles being emitted from various radioactive sources. 

Before we start the lab we have some SAFETY NOTES: Radioactivity is generally bad for 

you, especially if you ingest radioactive materials. Although the radioactive sources that you will 

be handling in our lab are very small, take some basic safety precautions. ABSOLUTELY NO 

EATING OR DRINKING IN THE LAB. HANDLE THE SOURCES BY THEIR EDGES. (The 

radioactive material is in a depression in the center of the plastic button). WASH YOUR 

HANDS BEFORE YOU LEAVE. 

We also have an APPARATUS NOTE: NEVER TOUCH THE WINDOW AT THE END 

OF THE G-M TUBE. The window is very thin and fragile and will break easily. 

 

Background information: Radioactive sources 

All of the chemical elements in nature have one or more radioactive isotopes. They are atoms 

with unstable nuclei. The three major kinds of radioactivity are alpha, beta, and gamma radiation. 

Alpha radiation: An alpha particle is made of two protons and two neutrons and is therefore a 

nucleus of a helium atom. A typical α-decay reaction is MeV 5.407HePbPo 4

2

206

82

210

84 ++→ . The 

5.407 MeV is seen as the kinetic energy of the decay products, including the alpha particle and 

any gammas (photons) that may also have been emitted. Note that the total number of protons 

and neutrons is conserved in this reaction. 

Beta radiation: A neutron in the nucleus decays into a proton, an electron, and an anti-

neutrino. The proton remains in the nucleus. The electron leaves at great velocity. For historical 

reasons, the electron is called a “beta” particle. The anti-neutrino also leaves the nucleus. A 

typical β-decay is MeV 0.546YSr 90

39

90

38 +++→ − νβ . Note that the value of Z has increased by 

one, but that the number of nucleons has not changed. 

Gamma radiation: Gamma rays are high-energy photons. When a radioactive nucleus decays, 

the “daughter” nucleus may be left in a nuclear excited state. The gammas (high energy photons) 

come from the decays of these excited states. This is similar to the way that a visible photon is 

produced from the decay of the excited state of an electron orbiting an atom. 

For these experiments, you will use either a 
137

Cs source that has a gamma energy of 1.17 

MeV or a 
60

Co source which gives off gamma rays at energies of 1.17 MeV and 1.33 MeV as it 

undergoes beta decay. 
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Background information: Statistical nature of radioactivity 

No one can predict just when a particular nucleus will decay, but when a large number of 

nuclei are present, the radioactive decay rate (number of decays in a unit time) can be measured. 

When you repeat the measurement, however, you will get slightly different answers because of 

the inherent randomness of the decays. The actually measured decay rate of a radioactive sample 

in one trial, let it be n, will be around its mean value µ. The probability of measuring n decay 

events in a trial is given by 

µµ −= e
n

nP
n

!
)( .      (1) 

This probability distribution is called the Poisson distribution. The derivation of eq. 1 can be 

found in most textbook on probability and statistics (e.g., “Mathematical Methods for Physicists”, 

by George B. Arfken and Hans J. Weber, 6
th

 edition). 

Question 1: Please prove that the Poisson distribution is normalized ( 1)(
0

=∑
∞

=n
nP ) and the 

mean value of n is µ (i.e., µ=∑
∞

=0
)(

n
nnP ). 

The standard deviation of a distribution, often symbolized by σ, is used to represent the 

degree of randomness of a measurement about its mean value µ. It is defined as 
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Here N is the total number of measurement, and ni is the result of the ith measurement. The 

standard deviation shows how wide a distribution is about its mean value. For the Poisson 

distribution, when N is large, the standard deviation is given by 
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  (3) 

That is, the standard deviation of the Poisson distribution is the square root of the mean value. 

Question 2: Please prove Eq. 3. 

If the mean value is large (typically µ >20), the Poisson distribution can be approximated by 

a Gaussian distribution: 

  
( )
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.    (4) 

The proof again can be found in most textbook on probability and statistics. This Gaussian 

distribution is clearly around its mean value µ, with a standard deviation .µσ =
 
Like in the 
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Poisson distribution, the standard deviation of this Gaussian distribution is the square root of the 

mean value. It can be shown that for this Gaussian distribution 68.3% of the measurement will 

fall into the region .µµσµ ±=±  Fig. 1 shows that when the mean value is large, a Poisson 

distribution evolves into a Gaussian distribution. 

 

Fig. 1 Poisson distribution with mean values µ=3, 10, and 25. 

Because of the randomness of the radioactive decay, we must also measure the error in the 

decay rate as well as the decay rate itself. The standard deviation is often used to indicate the 

error of the measurement. Another quantity used for this purpose is the standard error, or 

percent uncertainty, of the measurement, which is defined as 

%.100
mean

deviation standard
 error  standard ×=      (5) 

For a Poisson distribution, the standard error is thus ./1 µ  This means that the larger the mean 

value of the measurement, the smaller the standard error, and the more sure you will be on the 

result of a measurement. 

  

Background information: Radioactive half-life 

Although we cannot tell when a particular nucleus will decay, if we have a large number of 

nuclei we can confidently predict what percentage will decay. The number of particles remaining 

after some given time is described by an exponential decay curve: 

  



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Here N is the number of nuclei left, N0 the initial number of nuclei, and t the elapsed time. 

The radioactive half-life, which is the time in which half of the nuclei will decay, is given by τ. 

Depending on the isotope, half-lives range from less than a microsecond to billions of years. 

Question 3: Say that you start with one million particles, and half of them decay every second. 

Make a graph of N vs. t. Hint: Don’t bother with eq. 6. Just repeatedly divide N by 2 and plot the 

numbers. The resulting curve will be an exponential decay curve. How long does it take to run 

out of particles?  

 

Background information: The Geiger-Müller counter 

A Geiger-Müller counter is a cylindrical capacitor filled with gas. The outer conducting 

casing of the tube is the cathode, and the anode is a wire in the center of the tube. When a 

radioactive particle enters the tube, it ionizes some of the gas. The electrons from the gas are 

accelerated towards the anode, which is held at a positive high voltage. On their way to the 

anode, the free electrons collide with and ionize other gas atoms. The “secondary electrons” thus 

freed are also accelerated. Pretty soon there are whole “avalanches” of electrons traveling 

towards the anode. Sometimes gas atoms are excited by collisions with electrons. The excited 

atoms emit ultraviolet photons which can also start new “avalanches” of electrons anywhere in 

the tube. All of the electron avalanches are collected on the anode and constitute an electronic 

pulse. Each pulse corresponds to one particle crossing through the counter tube. The pulses are 

counted by an electronic “scaler”. 

Geiger counters can only register the presence or absence of a charged particle or gamma ray. 

They are not sensitive to the particle’s position, energy, or charge, and they do not detect some 

neutral particles (particularly neutrons) very well. The gas in a Geiger counter is typically helium 

or argon with a small percentage of a (usually organic) quenching gas such as ethyl alcohol 

vapor. The quenching gas limits the duration and size of the avalanches and prevents a massive 

electrical discharge from occurring in the tube. Discharges can happen anyway if the voltage is 

too high or if the amount of radiation entering the tube is too large. If a discharge occurs, the 

Geiger tube won’t detect radiation and may be permanently damaged. (This isn’t good if it 

makes you think you’re safe when you’re really in a high radiation area.) When operated 

properly and within their limits, Geiger counters are very reliable. 

 

Investigation 1: Statistical variation in the number of counts 

We will observe the random nature of radioactivity by repeating the same measurement 

several hundred times and performing a statistical analysis. We will also investigate the 

properties of the Poisson distribution and the Gaussian distribution that we have learned above, 

especially the relation between the mean value and the standard deviation. We will use the small 

Geiger counter that is interfaced to the computer. The computer will do the drudge work of 

taking and plotting hundreds of identical measurements. 

Procedure: 
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1. Put the gamma source in a holder and put the holder on the top slot of the wooden box 

holding the Geiger counter. IMPORTANT: The little “well” on the back of the button contains 

the radioactive material. This well must face the detector. Turn on the Geiger counter (leaving 

the sound off, please!) 

2. Make sure that the Geiger counter is connected to the LabPro interface. Start the “Logger 

Pro” software on the computer. Open the file named “Experiments/Nuclear Radiation w 

Computers/04_Statistics.cmbl”. Set up the screen so that you have two graphs. The top graph 

should be a scatter plot for the measured counts vs. time, and the bottom graph should be a 

histogram (bar graph) showing the statistical distribution of the data measured so far. The data of 

the graphs are shown on a data sheet on the left of the window. 

3. Set the sampling rate to 1 second/sample in the “Experiment→Data Collection” window, 

as shown in Fig. 2. This window can also be called out by clicking the clock icon. Set the total 

time length to 100 seconds, so that we will have 100 sample data collected. Click “Collect” (the 

green button) to take data. You should have more than 20 counts/second for the mean value of 

the data. If not please let the instructor know. You can optimize the ranges of the x and y axes of 

the two graphs when the data are being collected.  

 

 

Fig. 2 Data Collection window  

4. When the measurement is finished please study a little on the histogram. The “center of 

gravity” of the curve is the mean value, and one half of the FWHM (full-width at half-maximum) 

of the curve is roughly the standard deviation. Please estimate these two values. Now activate the 

counts vs. time graph by clicking on it, and perform a statistics on its data by clicking the “STAT” 

icon. Move the result window of the statistics so that it does not cover any data points. Are the 

mean value and the standard deviation match your estimation? Do they roughly satisfy the 

theoretical relation we have derived (i.e., .µσ = )? Please note that due to the statistical nature 
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of the decay, this relation may not be perfectly matched in a measurement, especially when you 

have limited number of data.  

5. Print out the graphs, one copy for each person. It is always a good habit to check the “Print 

Preview” before you print. You may need to reset the “Page Setup” or make other changes 

before you actually print. Tape the graphs in your lab notebook. In your lab report, verbally 

describe what you are seeing and what the graphs mean. Please record the mean value, the 

standard deviation, and the standard error in Table 1 shown below.    

6. Set the sampling rate to 2 second/sample. Set the total time length to 200 seconds, so that 

we will again have 100 sample data collected. Repeat steps 4 and 5. Compare the standard errors 

for the 2-second/sample and the 1-second/sample runs. Does taking a larger data number by 

using a longer time interval for each data reduce the standard error? 

7. Set the data collection time interval to 4 second/sample. Set the total time length to 400 

seconds, and repeat step 6. Please record all the statistical results and finish Table 1.  

 

Table 1 

Time 

interval/sample 

Mean 
(from the 

statistical result) 

Standard 

deviation 
(from the statistical 

result) 

Mean  

Standard error 









=

mean

deviation standard
 

1s/sample     

2s/sample     

4s/sample     

 

Question 4: Using your apparatus, how long would you have to count for one data in order to get 

a 1% standard error? 

Physics note: The randomness in this experiment is a property of nature. The variations that 

you are seeing in the number of counts are real. The differences in the number of counts from 

one measurement to another are NOT experimental error. They are due to the fact that the decays 

are controlled by quantum mechanics, which can only describe nature statistically. 

Note: If you want to know more about your results in this investigation, you’ll find the 

information listed under “Poisson statistics” in the index of almost any mathematics book on 

probability and statistics. Poisson statistics is also discussed in books on nuclear counting and 

instrumentation. 
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Investigation 2: Measuring the half-life of a radioactive sample 

When 
137

Cs β−decays, the daughter nucleus is 
137

Ba, which has a half-life of several minutes. 

You will measure this half-life. The instructor will prepare a sample for you by washing some 
137

Ba out of a 
137

Cs sample with dilute HCl (hydrochloric acid). 

Procedure: (READ THIS FIRST! You must work FAST after you start.) 

1. Set up the computer to take a reading at 10-second intervals. (You may have to play with 

this number a bit.) The computer must continue to take readings for a total time of about 10 

minutes. Turn off the histogram feature; you won’t need it here. Start the computer and make 

sure that it’s taking the readings properly. 

2. When you are sure that you are ready to go, ask the instructor for a sample. Start taking 

data the instant that you get your sample. Time is of the essence. Once you start, you cannot stop 

until the data run is finished. 

3. Estimate the half-life of your sample as follows: Pick up a point on your curve (not 

necessarily a real data point) and read off the number of counts. Find a corresponding point with 

half the number of counts as your first point on your curve. The half-life is the elapsed time 

between these two points. 

4. Use the curve fit capability of the computer to find the half-life. This is done by clicking 

on the “f(x)=” icon, and choose the “Natural Exponent” function. Look at the parameters that the 

computer used in the curve fit. Use these parameters to obtain the half-life of the source. How 

does this value fit compare to the one you did in step 3? Print out the graph of your data and the 

fitted curve. 

Question 5: Look up the actual half-life of 
137

Ba and compare it with your measured value. Is the 

accepted value within your error? 

In your lab report please summarize what you have learned in today’s lab.  
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Physics 214 Lab 9 

 

Graphical Schrödinger Equation 

Objectives of this lab: 

• Explore the solutions to the one-dimensional Schrödinger Equation (SE) for some simple 

potential energy functions. 

• Observe the relationship between wavelength, energy and potential energy for a quantum 

mechanical system. 

• Observe the manner in which the wave function changes as the potential changes suddenly at 

steps or barriers. 

• Compare the solutions of the SE in the finite well to those of the 1-D box (infinite well). 

• Calculate the coefficients of the reflected and transmitted waves in the case of an incoming 

wave encountering a “step up” in the potential energy. 

 

Description of the program: 

The program, Graphical Schrödinger Equation, plots solutions of the Schrödinger equation 

[ ]ψψ
)(

2
22

2

xUE
m

dx

d
−−=

ℏ
     (1) 

for a series of different potential energy curves and for several different scenarios. The potential 

energy curves are classified in the following way. 

Steps and Barriers: First of all, there are the potential steps and barriers which give rise to the 

scattering of plane waves (waves with a single wavelength). Potential steps involve a discrete, 

finite change in the otherwise constant potential energy at the location of the step. Potential 

barriers are made from two steps, one a step up and the other a step down. The two steps produce 

a region of higher (constant) potential energy, which can act like a barrier to moving particles. 

The behavior of the wave function in the regions of different potential energy depends on the 

energy, E, and mass, m, of the particle. In particular, those two parameters determine the 

wavenumber, k, of the wave function: 
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2

2
xUE

m
k −=

ℏ
       (2) 

The greater the mass of the particle, for a given energy, the greater the value of k and the smaller 

the wavelength, k/2πλ = . The greater the difference between the particle energy and the 

potential energy in that region, the greater the value of k, and the smaller the wavelength. 

Solutions: The solution to the Schrödinger equation in a region of a constant potential, U0, such 

that E−U0 is positive, is given by: 
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.)( ikxikx
BeAex

−+=ψ       (3) 

The first term represents a particle or stream of particles passing to the right, while the second 

term represents a particle or stream of particles passing to the left. Both types of motion must be 

allowed for, unless there is a physical reason to exclude one or the other. For example, in the 

case of a stream of particles coming from the left, moving to the right and encountering a 

potential step at x = 0, the left-moving stream is associated with reflection of the incoming 

stream at the sudden change in potential. In the region for x > 0, there should not be any left-

moving stream, since past that position there are no other obstacles for producing reflections. 

If part of the solution domain has a potential energy, U0> E, then the Schrödinger equation 

becomes 
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If we define 
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so that κ is real, then the wave function becomes in this case 
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The solutions are now real exponentials, which do not oscillate, but either grow or decay with x. 

If this region extends to positive infinity, then the exponentially growing term (the first one in 

the expression for ψ ) must have a zero coefficient. Otherwise, the wave function would become 

infinite at positive infinity, and all of the probability would be there. 

Matching conditions: The position at which the potential suddenly changes has to match the 

solutions obtained for the different potentials on either side. As we have discussed in class, the 

wave function and its first derivatives must be continuous across that position. That is, for a 

sudden change in the potential at x = a, 
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If the coefficient of the left-most incoming wave function is assumed to be fixed by the 

experiment (that is, the experimenter sets the amplitude of the incoming particle wave), and if 

there is no left-moving wave in the right-most region in the problem domain, then these 

conditions imposed at all of the positions where the potential changes are enough to solve for all 

of the coefficients in Equations 3 and 6 in terms of the known incoming amplitude. 
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Solving Problems: 

I) Reflection and transmission at a potential step. In this scenario, a wave is traveling to the 

right, and encounters a step up in the potential at x = 0, from U = 0 to U = U0. Assume that the 

particle energy E is twice of U0, that is, E =2U0. Determine the wave function ψ for this potential, 

assuming that the amplitude of the incoming wave is just A = 1. 

• First, draw a sketch of the potential energy function. Indicate the position where the potential 

changes suddenly. Also, use a dashed line to indicate the particle energy relative to the 

potential. 

• Second, write down the most general form of the wavefunction in each region, taking into 

account any assumptions, and identify the type of wave each part of each wavefunction is 

associated with. 

• Third, write down the value of the wavenumber for each of the regions, as in Equations 2 and 

5, in terms of the energy and potential. How much bigger is the wavelength in the region of 

potential U0 compared to the region where the potential is 0? 

• Now, apply the matching conditions to solve for the coefficients of your wave function. 

Remember that A = 1 for the right-moving wave in the left-most region. Your coefficients 

should be expressed in terms of the wavenumbers from both regions. 

• Finally, use the GSE program to set up a scenario like this by clicking on the Barrier 

Potentials menu button, and choosing Step. You are free to choose the particle energy, mass 

and step height. By clicking on the Parameters menu button, you can adjust the particle 

energy and step height to satisfy the requirements of this problem. Note the values that you 

use. By clicking on the wave function display menu item, you can choose whether to view 

the real or imaginary part of the wavefunction, and whether to view the total wavefunction, 

or just the scattered or incident part. For the step potential problem, you can only view the 

total wave. Choose to view the real part. 

• Now, display the solution by clicking on the Solve It menu button. Look at your solution. 

Compare the wavelengths in the two regions. Do they agree with what you predicted above? 

Make a sketch of the wave. Did the matching conditions do what they were supposed to do? 

• You can print your picture by pressing the “Alt+PrintScreen” keys, and then paste the 

memory into PowerPoint or Paint to print. You can also use the snipping tool provided by 

Windows to copy the picture. 

II) Burrowing into a step: Now set up a scenario in which the particle energy is only half that 

of the potential past the step. Solve the problem as in the first case, and plot it on GSE. Note 

from your solution the value of the coefficient for the wavefunction in the region past the step, 

and also note the plot on GSE. What does that tell you about the probability of the particle 

penetrating some distance into the barrier? 

III) Tunneling through a barrier: Now, go back to the main menu, and chose the barrier 

potential in the Potential Barriers menu item. Set up your energy to be half that of the potential 
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barrier height, and notice the width of the barrier, relative to the wavelength of your incoming 

wave. Solve the SE, and look at the scattered, incident and total waves. What does the amplitude 

of the scattered wave solution in particular tell you about the probability of the wave making it 

through the barrier? 

Adjust the barrier width. How wide does the barrier need to be, relative to the wavelength, for 

the transmission probability to become nearly zero? 

IV) Square wells: In the Well Potential menu, chose the Square Well. Solve the problem and let 

the computer display the energies and the wave functions. Examine the relation between the 

wavelength and the energy. Observe the behavior of the wave function at the boundaries of the 

well. Change the depth and width of the well, and watch how the energy levels and the wave 

functions change. 

V) Harmonic Oscillators: In the Well Potential menu, chose the Harmonic Oscillator. Solve the 

problem and let the computer display the energies and the wave functions. Examine the 

separation between the energy levels. Examine the relation between the wavelength and the 

energy. Observe the behavior of the wave function at the boundaries of the well. Change the 

width of the well, and watch how the energy levels and the wave functions change. Observe the 

wave distribution at low and high energy levels. Does it agree with classical physics? 

 

 

 

 

Appendices: Math helps on solving the Schrödinger equations 

1) Reflection and transmission at a potential step. 
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2) Burrowing into a step. 
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