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Physics 213 Lab Report Guidelines 

 

Students are required to read the lab manual, and collect their questions before coming to the 

lab. Each student should have a notebook for the lab. Please bring with you some common 

stationery to the lab, including a pen, a calculator, a flash drive, and a camera. 

Laboratory report for each lab is due in one week following the date of the completion of the 

experiment, unless otherwise arranged. No absences from the labs or late lab reports can be 

accepted, except for pre-approved and extenuating circumstances. 

All text portions of the lab reports should be prepared using Microsoft Word or a compatible 

word processor. All graphs in the lab reports should be prepared using Microsoft Excel or a 

compatible graphing program. Hand-drawing diagrams may be attached to the lab report. If you 

use a photo, please crop the photo so that only necessary information is shown. You should submit 

a printed hardcopy for the lab report. A sample student lab report will be posted online. 

All lab reports should have the following organizational structure: 

1) Title page — Title of the lab experiment, date of the lab experiment, your name, group 

members’ names, course number, and instructor for that lab. 

2) Introduction — Explain the purpose of the experiment. Make a brief statement of what the 

experiment is about.  Explain possible applications of the physics you learn in that lab. 

3) Background principles — Include and explain any relevant background physics concepts 

and/or mathematical equations used in data collection and experimental analysis. Include 

here any derivations asked for in the manual which are necessary for analyzing the data. 

4) Experimental procedures — Include a complete description of the instrumentation used, 

the manner in which you used it, and the quantities to be measured. Sketch the equipment 

detail and the experimental setup. You may also include cropped photos. The sketches and 

photos should be supplemented with legible notes. Identify the strengths and weaknesses 

of the experimental setup, including any special cautions observed. Describe the 

chronological procedure of how you conduct the experiment, including demos performed 

by the instructor, problems encountered in the course of the lab, and how you overcame 

them. 

5) Results and discussion — Present your experimental findings, along with relevant data 

tables, data printouts, graphs, spectra, or images obtained. Describe how you analyze and 

interpret your data in light of the theory developed in part 3 to reach your final results. 

Answer questions that are raised in the lab manual. 

6) Conclusions — Summarize the major findings and accomplishments of your experiment. 

Explain any errors incurred or discrepancies with theory, and identify where further work 

may be applicable. 

 



Mathematica in Physics

Creating, Solving and Plotting Physics Equations in 
Mathematica

Mathematical Operations
Mathematica is a wonderful tool for doing mathematics, solving equations, and plotting functions, especially as they relate to Physics. This is

a short tutorial to help introduce to you some of the functionality of this awesome tool. There are many things which you will do with Mathemat-

ica which you can do with other tools such as your programmable calculator. But, trust me, Mathematica blows your calculator out of the water!
For now, we'll start slow, to get you started and not overwhelmed.

When you open Mathematica on your computer, you'll find a menu up top, a blank "notebook" to the left, and a "palette" -- Basic Math
Assistant -- to your right. If the palette is not there, go to "Palettes" in the menu, and choose Basic Math Assistant.

The menu is for accessing files, controlling format, choosing palettes and style, and controlling evaluation. We won't have to use that much
for this exercise.

The palettes are for inserting numbers, symbols, formatting expressions and inserting functions and commands into the notebook.

The notebook is where the majority of your work will be done. It is made up of "cells", into which just about anything can be typed, depend-
ing on the cell format. However, the primary purpose of the cells is for entering mathematical expressions for the sake of evaluating them,
defining them, plotting them, or whatever else you might do to them.

For example, you might enter a simple addition formula:

8 + 12 - π

I have entered this formula as text, so Mathematica just reads this as a line of symbols. In the notebook you have opened, everything you type
is in Input format, which is the format you want for evaluating mathematical expressions.  When I type the above expression in the Input format,
I have to type "Shift+Enter", and so get:

In[1]:= 8 + 12 + π

Out[1]= 20 + π

If you do want to type text as I am doing here in order to make comments, pressing "Alt+7" converts the cell you are in to "text" format.

Notice that a "cell" consists of an input line, and an output line. 
Notice that the output to the input expression is a whole number added to Pi. That is because the most precise way to express the irrational

number Pi is to use the symbol. To explore this issue further, first, you need to know that Mathematica stores the data from cell 1 for as long as it
is open, unless you tell it to erase it. You can access it by typing the percent (%) key, followed by the cell number (1):

In[2]:= %1

Out[2]= 20 + π

To get a rational number of a certain precision, you can type N[%1,30], where the N is the command to convert an expression into a number,
and the 30 is telling the computer that I want 30 digits of precision:

In[3]:= N[%1, 30]

Out[3]= 23.1415926535897932384626433833

Mathematica can go as precise as you wish. However, Mathematica is touchy about precision. For example, if we had used a decimal in the
original expression, say 12. instead of 12, Mathematica automatically limits the precision to just six figures. It’s not exactly significant figures,
but something like it. Let’s make that switch and see how Mathematica handles it.
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In[4]:= 8 + 12. + π

Out[4]= 23.1416

In[5]:= N[%4, 30]

Out[5]= 23.1416

All the precision of Pi is lost, because Mathematica has assumed that the 12. is an approximation, and therefore keeping Pi infinitely precise
is misleading.   

The important lesson here is that Mathematica  treats decimals as approximate numbers of limited precision, while it  treats integers and
irrational numbers as exact. This can make a difference when solving the equations you are working with.

 

Ok, other things to notice. Addition looks normal. So does subtraction ("-"), multiplication (*, or just space) and division (/). 

But to specify the precision we needed to invoke a Function, or really, a Command, N. Like ALL commands/functions in Mathematica, it has
a name ('header'), N, and an argument (enclosed by square brackets) with one or more "slots" for input, separated by commas. 

The name of the built-in function ALWAYS begins with a capital letter. 

The first slot is usually the input for the function, in this case the output from cells 1 or 4. The second slot is an option that specifies the
precision of the output of the function. Each "built-in" command/function has its own set of slots according to its definition. The available
functions can be found by going to the Documentation Center through the Help tab of the menu.

Simple functions just have the single slot for the input, as in:

In[6]:= Cos[%1]

Out[6]= -Cos[20]

Notice that Mathematica does not convert to decimal form unless it *has* to. The best answer to the question, "what is the cosine of 20 + Pi
radians" is "the negative cosine of 20”. (Recall the trig addition formula, cosine(a+b) = cosine a cosine b - sine a sine b, and that cosine Pi = -1.)
To make Mathematica reduce the accuracy of the answer and give you a decimal, you need to use the command, N. Or, you could introduce
decimal precision in any of the inputs of the problem. Consider:

In[7]:= N[%6]

Out[7]= -0.408082

In[8]:= Cos[π + 20.]

Out[8]= -0.408082

Still another way to do it is to use the Post Fix notation //N.

In[9]:= %6 // N

Out[9]= -0.408082

Finally, notice that in input line 8, square brackets are used to group the input into the cosine function. The square brackets [] are only used
for grouping the inputs to a function/command. Regular parentheses () are used for grouping numbers or variables in algebraic operations, just as
they are ordinarily used. A third, very important kind of delimiter, {}, or curly brackets, are used for collecting and inputting multiple expres-
sions for functions, or simply for evaluation. Here are some examples:

In[10]:= {3 + 5, 92.2 + 322.1, Cos[2.55]}

Out[10]= {8, 414.3, -0.830054}

In[11]:= Nπ, ⅇ, 2 , 5
3

, 10

Out[11]= {3.141592654, 2.718281828, 1.414213562, 1.709975947}

Oh, and notice that the output in both cases is contained in curly brackets as well. If you want to recall just one of those values later on, you
need to Pick it, like so

In[12]:= First[%11]

Out[12]= 3.141592654

or if you wish to obtain the second value from the list in ouput line 11, you can type

In[13]:= %11[[2]]

Out[13]= 2.718281828
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◼ Exercises

1. Calculate (520  - 330)/ 225, 990 * 23 - 3400, and 12.4*Sin[2.1]. Express your results in 6-digit precision.

2. Evaluate in six-digit precision the cosine, sine, tangent, the square, the cube, the natural log, and the natural exponent for two inputs: 
1.23 and π. 

Expressions and Equations
Any symbol that has not already been used as a built-in command is fair game for being a variable in Mathematica. You need to be careful in

naming variables and in using them in expressions. For example, if I make fun and gun to be variables, and I want to multiply them, I must write
fun gun or fun*gun, but not fungun. The last option creates a new variable, fungun. 

The equal sign (=) assigns a value to the variable on the left. For example, 

In[14]:= fun = 3.2

Out[14]= 3.2

In[15]:= fun

Out[15]= 3.2

This is useful for assigning value to constants, like g = 9.80, or c = 2.998 10^8. Mathematica will remember that value for fun until you clear
it or close the program. 

In[16]:= Clear[fun]

In[17]:= fun

Out[17]= fun

 You can also define a variable in terms of other variables. 

In[18]:= gun = x + y

Out[18]= x + y

In effect, I have defined gun to be a function of the variables x and y. This is the simplest way to define functions of variables in Mathemat-

ica, but it is not necessarily the most useful. 
Now, if x and y have fixed values, then that will fix the value of gun, as well.

In[19]:= {x = 4.3, y = 2.4}

Out[19]= {4.3, 2.4}

In[20]:= gun

Out[20]= 6.7

If I change the values of x and y, gun changes, too, 

In[21]:= {x = 2.3, y = 1.4}

Out[21]= {2.3, 1.4}

In[22]:= gun

Out[22]= 3.7

If I want to work with the variable expression again, however, I need to clear the values of x and y. (For example, if I want to take the
derivative of the function, or if I want to solve for some of the variables, as considered a bit further below.)

In[23]:= {x =., y =.}

Out[23]= {Null, Null}

or
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In[24]:= Clear[x, y]

In[25]:= gun

Out[25]= x + y

Now, let's say that I know the function gun  takes on a certain value, and I want to know what possible values the variable x  can take.
Mathematica has the command for you, called Solve! In the input below, I am asking Mathematica to tell me, if gun = 5.4, what are the possible
values of x.

In[26]:= Solve[gun ⩵ 5.4, x]

Out[26]= {{x → 5.4 - y}}

The answer should be x = 5.4 - y, and that's what the output is saying, kind of. However there are several very important things to note here. 

First of all, when I wanted to solve for x when gun = 5.4, I didn't set gun = 5.4. I wrote something different, gun == 5.4. The second equal
sign changes the meaning from "permanent assignment" to "conditional assignment". The important thing about this  is  that  by posing the
question, "If gun = 5.4, what is x?" I don't overwrite the fact that gun = x + y, which I would have done if I used the single equals sign. 

The second thing to note is the output. The arrow symbol is used instead of an equality. (One can type the arrow symbol in an input line by
typing "-"  and then ">".)  Again, the equality would defeat the purpose of treating x as a variable, by assigning the value in this case to x
permanently. The arrow is called a "rule". It completes the sentence, "If gun = 5.4, then x = 5.4 -y." If I do wish to assign a variable or function
that value from now on, I do the following:

In[27]:= temp[y_] = x /. First[%26]

Out[27]= 5.4 - y

In this case, I’ve told Mathematica that the solution for x when gun = 5.4 is a function (called temp) of the variable y. The underscore after
the y is necessary if I want to leave the names of the variables undetermined. Whatever value or variable is put into that first slot takes the place
of “y” in the definition of the function “temp”. 

In[28]:= temp[y]

Out[28]= 5.4 - y

The function works just as well if I call the variable “z” instead.

In[29]:= temp[z]

Out[29]= 5.4 - z

Remember that First[%] extracts the expression from the brackets in the previous output. The symbol "/." means, "evaluated at", and should
always be followed by a rule indicating a temporary replacement of the variable in front of the /. symbol. The input line would read, "temp

equals x, when x is evaluated according to the rule given in the first slot of the bracketed expression in the previous output." The use of the
equals sign means the assignment to temp is permanent, while the variable x is left as an undetermined variable.

If I want to define a variable temp using a different possible value of x (say from a different solution involving x) then I could type this.

In[30]:= temp = x /. x → 2.3

Out[30]= 2.3

I have assigned a possible value of x to temp, without requiring x to take on that value permanently. The value was transferred to temp

through x. The variable x remains undeclared.

In[31]:= x

Out[31]= x

Solve works for any algebraic expression, even very nasty ones.

In[32]:= tun = x^3 - 5 x^2 + 3 x - 7

Out[32]= -7 + 3 x - 5 x2 + x3
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In[33]:= Solve[tun ⩵ 0, x]

Out[33]= x →
1

3
5 + 152 - 24 33 

1/3
+ 2 19 + 3 33 

1/3
,

x →
5

3
-
1

6
1 + ⅈ 3  152 - 24 33 

1/3
-
1

3
1 - ⅈ 3  19 + 3 33 

1/3
,

x →
5

3
-
1

6
1 - ⅈ 3  152 - 24 33 

1/3
-
1

3
1 + ⅈ 3  19 + 3 33 

1/3


Notice that  there are three rules of replacement possible, corresponding to the three solutions that  exist when solving for a  third order
polynomial. The first solution given is real, while the next two are complex numbers (complex conjugates). If I want the first expression for later
use as a function in its own right, I would do this:

In[34]:= soln = x /. %[[1]]

Out[34]=

1

3
5 + 152 - 24 33 

1/3
+ 2 19 + 3 33 

1/3


In[35]:= N[%]

Out[35]= 4.67857

The variable x has still not been assigned a value.

In[36]:= x

Out[36]= x

A solution doesn't have to involve numbers. It can be a representation of one variable in terms of other variables, obtained from an algebraic
expression. For example, if 3 a b + 5 b c = 7c d - 4 d, and you would like to solve for d in terms of the other variables, you could type:

In[37]:= Solve[3 a b + 5 b c ⩵ 7 c d - 4 d, d]

Out[37]= d →
3 a b + 5 b c

-4 + 7 c


If that solution is something worth keeping around, you could assign it to another, more descriptive name, as we did before:

In[38]:= dist = d /. %[[1]]

Out[38]=

3 a b + 5 b c

-4 + 7 c
And you could obtain numerical values for particular values of your input variables, a,b and c.

In[39]:= dist /. {a → 2.1, b → 3.2, c → 4.5}

Out[39]= 3.35127

In[40]:= {a, b, c}

Out[40]= {a, b, c}

Systems of equations are handled by grouping the system with curly brackets

In[41]:= bun = 4 x - 7 y

Out[41]= 4 x - 7 y

In[42]:= gun

Out[42]= x + y

If both bun and gun take on specific numerical values, then that fixes the values of x and y. You can use Solve to sort that out. 

In[43]:= Solve[{bun ⩵ 3, gun ⩵ 8}, {x, y}]

Out[43]= x →
59

11
, y →

29

11


If I substitute this solution back in to my function bun, I should get back the value I selected for it.
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In[44]:= bun /. %[[1]]

Out[44]= 3

There is no limit to the number of equations you can include in your system, although you generally only need to include as many equations as
you have variables.

◼ Exercises

1. Solve the thin lens equation 
1

p
+

1

q
=

1

f
 for the image distance, q, in terms of the variables p (corresponding to the object distance) and 

f (the focal length of the lens). Call your solution for the image distance q,  "image". Obtain an expression for the magnification (given 
by the equation mag = -q/p) in terms f and p by substituting your solution “image” for q. 

2. For a thin lens of focal length f  = 20.0, find the image distance and magnification (the numerical values for image and mag) for an 
object located at the following positions: {p = 10, 19, 21, 90}

3. For an image located at {q = 30.0 cm} and having a magnification of {mag = -2.5} find the corresponding object position, p, and 
focal length, f, of the lens. (Hint, solve for the system of equations. Mathematica will complain about the approximate values used.)

Plotting and Visualizing the Results
Solve provides specific solutions for specific inputs, or else gives an expression as the output. Sometimes, that is good enough. Sometimes, it

is really nice to see a graphical representation of the solution to summarize the results in one picture. For this, Mathematica provides the user
with a great number of tools. The most basic one is simply Plot[expression, range]. An expression is usually a function of one or more variables,
such as the third order polynomial function I called "tun" earlier. The range is simply the range of values for which I wish to plot the function.
With trial and error, I find that the range from -3 to 6 is interesting. So I type the command:

In[45]:= Plot[tun, {x, -3, 6}]

Out[45]=

-2 2 4 6

-50

-40

-30

-20

-10

10

20

In[46]:= tun

Out[46]= -7 + 3 x - 5 x2 + x3

See the zero at ~4.67 that we found using Solve earlier? The meaning of the complex roots is seen here in that although the function changed
directions three times and could have crossed the x-axis three times, it only crosses once (the real root). To see the other two roots, you need to
look at the function in imaginary space. By default Mathematica only shows you the most interesting part of the function, in the part of the range
where it undergoes the most change. You may have to adjust that. 

There are lots of options with Plot. These options are also Commands (and must be capitalized), and are placed in the slots after the first two
mandatory slots for the expression to be plotted and the range of the variable. Unless you want to set their values permanently, you should use
rules to set them for the particular graph you are making.  Here I show you just a few.
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In[47]:= Plot[tun, {x, -3, 6}, AxesLabel → {"x", "tun"}, PlotRange → {{0, 6}, {-30, 30}},

PlotStyle → {AbsoluteDashing[{5, 5}], Hue[.8]}, PlotLabel → "tun vs. x", PlotPoints → 100]

Out[47]=

1 2 3 4 5 6
x

-30

-20

-10

10

20

30
tun

tun vs. x

PlotRange fixes the extent of the axes in first the horizontal, and then vertical directions. If you don't do this, Mathematica will often focus on
the interesting part of the function, but may miss what you wish to look at.

PlotStyle allows you to change how the lines for the different plots look.

Axes- and PlotLabel are obvious. 

PlotPoints is a way to force Mathematica to plot more carefully and in detail. It usually doesn't miss interesting behavior, but if there are a lot
of fluctuations, it can miss things. You can demand that it plot a certain number of points over the range of the graph.

You can plot multiple expressions of the same variable by grouping them in the first slot of the Plot command using curly brackets. 

One very useful command that can be used with the Plot command is Manipulate. This command allows you to see at a glance what happens

to the plot by varying one of the variables in the expression. Let's refer once again to the thin lens equation, 
1

p
+

1

q
=

1

f
.

In[48]:= Solve[1 / p + 1 / q ⩵ 1 / f, q]

Out[48]= q → -
f p

f - p


Again, I will give this solution a name, image, but instead of leaving it as a variable, I will define it as a function of the variables p and f

In[49]:= image[f_, p_] = q /. First[%]

Out[49]= -
f p

f - p

It is usually necessary to define functions this way when you want to plot a function of two or more variables. The underscore is necessary if I
want to leave the names of the variables undetermined. Whatever value or variable is put into that first slot takes the place of "f" in the definition
of the function "image". 

In[50]:= {image[w, c], image[39, 54]}

Out[50]= -
c w

-c + w
,
702

5


Now we are ready to see what we can do with the Manipulate command.
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In[51]:= Manipulate[Plot[image[f, p], {p, -50, 50},

PlotRange → {All, {-30, 30}}, AxesLabel → {p, q}], {f, -10, 10}]

Out[51]=

f

-8.08

-40 -20 20 40
p

-30

-20

-10

10

20

30

q

By sliding the bar to the right, I can see how the image distance varies with the object distance as f  changes from a negative number (a
diverging lens) to a positive one (converging lens). This is a great tool for seeing what would happen to the image as you change the focal length
of the lens, like the optometrist might change it by switching the lenses with his machine to test which prescription is best for you. You can see
the value of f you have chosen by clicking on the plus sign at the end of the sliding track.

◼ Exercises

1. Plot the following expressions involving the variable x: {x^2 + 3x - 2, Cos[x^2], Log[x^5 + 3 x^3]}

2. Recall that the equation for the position as a function of time of a uniformly accelerated object is x[t] = x0 + v0*t + 1/2 a*t^2, where 
x0 is the initial position, v0 is the initial velocity, and a is the acceleration. Define your position to be a function of time plus the initial 
values. That is, let x[t] = pos[t_,x0_,v0_,a_], and make a plot of the position of the object as a function of time, t, for the values of the 
parameters {x0= 2.0 , v0 = -5.0 , a = 5.0 }.

3. Using your expression for position obtained above, create a manipulatable plot that allows you to see how the position vs. time will 
change as you vary the acceleration from -2 m/s^2 to 10 m/s^2. Use {x0= 2.0 , v0 = -5.0 }.

Conclusion
I hope this lab has given you a taste of the power Mathematica brings to your study of physics, chemistry and many other sciences. And we

haven't even touched on its ability to do calculus. That'll come next week!
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Lab 2: Electrostatic Simulations Using Interactive Physics 

 

You used Interactive Physics last fall to simulate a number of mechanical phenomena. You 

will use it in this laboratory exercise to simulate Coulomb’s Law and electric field phenomena.  

In each part of this section of the laboratory exercise, you will be asked to set up a simulation. 

Then, before running the simulation, you are to make a written prediction about what will happen 

when you RUN the simulation. The prediction should focus on the accelerations (magnitudes and 

directions) of each object involved in the simulation. You should predict how large the initial 

magnitude of the acceleration of each object will be as well as the direction of each 

acceleration (a sketch would be helpful in giving the directions). In addition, you should 

state whether the acceleration of each object will remain constant, increase, or decrease 

during the simulation. You must also show how you derived your predictions from the 

fundamental principles of electrostatics and mechanics -- in particular, Coulomb’s Law and 

Newton’s Second Law.  

In the first part of each section, a correct sample prediction will be given. Use these sample 

predictions as guides in writing your own predictions for the other parts.  

After making your prediction, you should RUN the simulation and observe and record what 

actually happens. Write down the initial magnitudes and directions of each acceleration and 

describe how they change as the simulation progresses.  

Finally, if a prediction differs from an observation, you should resolve the differences.  

Discuss what mistakes you made in deriving your initial prediction and explain what actually 

happened based on Coulomb’s Law and Newton’s Second Law.  

Your grade will not be reduced for an incorrect prediction as long as you make a correct 

observation and properly explain the outcome in the resolution section.  

 

a) Coulomb’s Law  

This part of this laboratory exercise will deal with systems of two or more point charges.  

Start the Interactive Physics program. Open the Interactive Physics program and in the VIEW 

menu select Workspace. Turn on Rulers, Grid Lines, XY Axes, and Coordinates. The solid lines 

you see are the X and Y axes -- the Y axis is vertical and the X axis is horizontal. The X and Y 

coordinates of the mouse pointer are given in meters at the bottom of the screen. This can be 

helpful in determining the position of various points on the path of a charged object. If the origin 

of the XY system is not in the center of the screen use the Scroll Bars to move it there.  

Create two circular objects (Click circle on the side menu bar). Right click on the created 

circle and use the Properties Window to place them at the following coordinate locations: (–.5 m, 

0), (+.5 m, 0). Make sure that the diameters of the two charges are small enough so that they do 

not touch when they are in their initial positions. Use the Properties Window to assign masses of 
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10 kg. to each object. Note that Interactive Physics automatically assigns a charge of +100μC to 

each object you create. Do not change these charges until you are told to do so. To create an 

acceleration meter for each object, click on the object. Once you have chosen the object, 

click Define  Vectors Acceleration. Then click Measure  Acceleration  All. 

Go to the WORLD menu, select Gravity, and turn gravity off by selecting “none”. Select 

Electrostatics from the World menu and turn it on. With these changes, your objects will feel 

only electrostatic forces. 

  

i) Equal charges, equal masses (Q1 = Q2 = 100 μC , M1 = M2 = 10 kg.)  

The simulation you have created has two equal mass objects with equal positive charges.  

Predict (This part should be written in your lab notebook) 

 

The X axis is directed to the right and the charge on the left will be called charge #1. The fact 

that like charges repel determines the directions of the forces on each charge. By Newton’s 

Second Law, the acceleration of an object will be in the same direction as the force on the object. 

Thus, the acceleration directions will be as follows:  

 

The initial magnitudes of the forces are given by Coulomb’s Law: 

 
9 6 6

1 2
1 2 2 2

(8.99 10 )(100 10 )(100 10 )
89.9

(1.00)

KQ Q
F F N

r

− −

× × ×
= = = =  

The magnitude of the initial acceleration of each object is determined using Newton’s 

Second Law:  

A1 = F1/M1 = (89.9)/(10) = 9.0 m/s2  

A2 = F2/M2 = (89.9)/(10) = 9.0 m/s2  

As time passes, the distance between the two charges will increase, which will cause each 

force to decrease. The accelerations will thus decrease.  
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Simulation: Run your simulation. Use STOP and RESET buttons to replay the simulation. 

Use the slide bar or arrows on the left bottom of the screen to view snap shot of the scenarios. 

Observe (Record your observations in your lab notebook.)  

Resolve (If your observation agrees with your prediction, you don’t need to write anything in 

the resolve section of your lab notebook).  

 

ii) Unequal charges, equal masses (Q1 = 200 μC, Q2 = 100 μC, M1 = M2 = 10 kg.)  

Use the Properties window to double the charge of one object. Use the same initial positions 

of the two objects that you used in part i).  

Predict (Be sure to give reasons, based on the laws of physics, for each part of your 

prediction.)  

Observe  

Resolve  

 

iii) Equal charges, unequal masses (Q1 = Q2 = 100 μC, M1 = 20 kg., M2 = 10 kg.)  

Make the charges the same but double one of the masses.  

Predict  

Observe  

Resolve  

 

iv) Opposite charges, equal masses (Q1 = –100 μC, Q2 = + 100 μC, M1 = M2 = 10 kg)  

Make the masses the same but make the charges equal and opposite (e.g., one positive and one 

negative)  

Predict  

Observe  

Resolve 

 

v) Oscillator  

Use two equal positive charges (100 μC each, 10 kg. each) that are anchored (Use anchor 

symbol from the menu) in place (-4.0,0, 4.0, 0) and a third positive charge (same charge and mass 

of the anchored charge) that is free to move to create an oscillating system. Determine the 

equilibrium position (the location where the third charge will not move if it starts at rest). Is it a 

simple harmonic oscillator for small displacements from equilibrium? Create a position graph. 
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For this, after clicking on the third object, open X position graph from measure icon. Then 

examine position graph to determine if the motion is simple harmonic. Measure the period and 

frequency of the oscillation using the position graph. [Be sure to record the details of your 

oscillator. Draw a sketch showing the locations and value of each charge.] Let the instructor see 

this part when you have it working. Now repeat the experiment by increasing the oscillating 

charge to 200 μC, keeping mass of the oscillating charge at 10 kg. Next increase mass to 20 kg 

and keeping charge to 100 μC. 

 

b) Electric Fields  

In this part, you will observe the interaction between one or more point charges and an 

external electric field.  

Go to the WORLD menu and turn Electrostatics off. Select Force Fields from the WORLD 

menu. Leave the Sample Force box at “Custom”. Select the “Field” button from the three buttons 

in the upper left hand corner of the window. In the Fx box type the following:  

self.charge*10000  

Leave the Fy and T (torque) boxes empty. You have created an electric field of magnitude 

10000 N/C in the x-direction (the x-direction is to the right). This field now exists throughout the 

Interactive Physics universe.  

 

i) Q, M (Q = 100 μC., M = 1.00 kg)  

Create a single object of charge +100μC and mass 1 kg, and place it at location (0,0). Create 

an acceleration meter for this object. Once you have chosen the object, click Define  Vectors 

Acceleration. Then click Measure  Acceleration  All. 

Predict  

The following equation relates the electric force on a charged particle to the electric field 

acting on it:  

F = QE  

where F is the electric force vector and E is the electric field vector. Since Q is positive, E 

points in the same direction as F as shown in the figure below: 
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The acceleration vector thus points to the right as shown in the figure below: 

 

                                         

The magnitude of the electric force acting on the particle is found as follows:  

F = QE = (100 μC)(1 x 104 N/C) = 1.00 N  

The acceleration is found from Newton’s Second Law  

A = F/M = (1.00 N)/(1.00 kg.) = 1.00 m/s/s  

Observe  

Resolve  

 

ii) 2Q, M (Q = 200 μC., M = 1.00 kg)  

Double the charge of the object and predict how its acceleration will compare with that of the 

Q, M object.  

Predict  

Observe  

Resolve  

 

iii) Q, 2M (Q = 100 μC., M = 2.00 kg)  

Predict  

Observe  

Resolve 

 

iv) -Q, M (Q = –100 μC., M = 1.00 kg)  

Make the charge negative  

Predict  

Observe  

Resolve  

 

v) Dipole  
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Delete the object used above and create an electric “dipole”. This is done by creating two 

objects (-0.5,0 and +0.5,0) of equal mass (1.00 kg. each) and equal but opposite charges (- 100 μC 

and +100 μC) and connecting them with a rigid rod of length 1.00 meter. The rigid rod tool is 

activated by pointing the mouse at the tool shown at the left below, clicking on it and releasing 

the mouse button. Connect the rigid rod from the center of one object to the center of the other. 

 

Orient the dipole as shown below and predict what will happen to it. In particular, will the 

center of mass of the dipole accelerate? If so, in what direction will it accelerate and what will 

be the magnitude of the acceleration? Will the dipole rotate? If so, in what direction? (Be sure to 

give reasons for your predictions based on the fundamental principles of electrostatics and 

mechanics.) [Note that the force of attraction between the two charges of the dipole is exactly 

canceled by the compressive forces exerted by the rod. Thus, the sum of the internal forces of the 

dipole is zero and only the external forces (i.e., the forces exerted on the two charges by the 

electric field) have any effect on the motion of the dipole.] 

 

Predict  

Observe  

Resolve 

  

Now orient the dipole as shown below. Will the center of mass of the dipole accelerate? If so, 

in what direction will it accelerate and what will be the magnitude of the acceleration? Will the 

dipole rotate? If so, in what direction? (Be sure to give reasons for your predictions based on the 

fundamental principles of electrostatics and mechanics.) 
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Predict  

Observe  

Resolve  

You will now change the electric field so that it increases in the X direction. Go to the 

WORLD menu and select Force Fields. Click the “Field” button and in the Fx box type the 

following:  

self.charge*10000*self.p.x 

The field now has the functional form 10000X. Orient the dipole as shown below and be sure 

that the negative charge is initially located at the origin. Will the center of mass of the dipole 

accelerate? If so, in what direction will it accelerate and what will be the magnitude of the 

acceleration? Will the dipole rotate? If so, in what direction? (Be sure to give reasons for your 

predictions based on the fundamental principles of electrostatics and mechanics.) 

 
Predict  

Observe  

Resolve 

  

You will now make predictions about the motion of an electric dipole near a point charge. 

(Use a point charge of +100 μC.) Turn off the electric field used above (open the World menu, 

select Force Field, and select the OFF button.) Turn on Electrostatics. Set up the simulation 

shown below: 
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Will the dipole move? If so, in which direction will it move? Give reasons for your prediction.  

Predict  

Observe  

Resolve 
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Lab 3: Electric Field and Potential Measurements 

 

Equipment:  

1. Power Supply – 0-24 volts 

2. DMM (orange) 

3. Sets of connecting wires and alligator clips 

4. 3 conducting papers with point/plane, plane/plane with a conductor in the middle, and a 

dipole 

5. All accessories 

 

Introduction  

In this laboratory experiment, you will examine the electric fields produced by three different 

charge configurations:  

a) A point charge and a charged plane  

b) Two charged planes with an uncharged conducting sphere between them 

c) Two point charges (one positive, one negative)  

It is not practical to establish electric fields in the laboratory using actual charged objects. 

There are two reasons for this: 1) charge will leak from the objects, causing the fields to change 

before the measurements can be completed and 2) electric field measurements for this type of 

system require instruments that are expensive and difficult to use.  

Rather than using charged objects, we will use conductive papers on which three-dimensional 

versions of the objects are placed. One of the objects will be connected to the negative terminal of 

a DC power supply and the other object will be connected to the positive terminal. Electrical 

currents will flow in the paper from the positive object to the negative object. The electric fields 

associated with these currents in the paper are identical to the fields that would exist in a two-

dimensional plane containing the actual charged objects. It is not too wrong to think of the flow of 

electric current in the paper as being like the electric flux.  

The electric field cannot be measured directly. Instead, you will measure the potential (also 

called voltage) of a large number of points on the paper (relative to the grounded surface) using a 

voltmeter and plot these points on a piece of graph paper. Points of equal potential will then be 

connected by curves called “equipotential lines”. (Note that these “lines” are usually curved and 

not straight.) The electric field lines will then be drawn using the rules that 1) they are always 

perpendicular to the equipotential lines and 2) they start from positive charges and end on 

negative charges. (The object connected to the positive terminal of the battery is considered to be 

the positively charged object while the object connected to the negative battery terminal is the 

negatively charged object.)  

The above procedure will be used for charge configurations a), and b). You will then make a 

three-dimensional surface graph of the potential for configuration c) using a spreadsheet. The 
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slope of the three-dimensional graph at any point will be used to determine the electric field 

vector at that point. 

 

Procedure  

a) A point charge and a charged plane  

 

Turn on the voltmeter and let it warm up. Make sure it is set to the 20-volt range and that its 

function switch is set to DC.  

Place the conductive sheet for configuration a) on the fiberboard tray (Figure) and put nuts 

and bolts specific to that configuration. Use alligator clips (one object is the point charge and the 

other is the plane) to connect the positive terminal of the power supply to the object you want to 

be positive and to connect the negative terminal to the negative object. Set the voltage on the 

power supply to 2 V. The ground lead of the voltmeter should be connected to the pin in the 

negative object. Be careful not to touch the paper with your hands more often than necessary -- 

the moisture on your hands may alter the conductivity of the paper. Please note here a “point 

charge” should have about 2-cm diameter at least, otherwise the voltage is not well defined near 

the charge. 

 

 

 

 

 

 

 

 

 

 

 

When the voltmeter probe is touched to a point on the paper, the voltmeter will read the 

potential of that point. The potential of the object connected to the ground lead (the negative 

object) should be zero volts. Touch the probe to that object and see if it has a potential of zero 

volts. Then touch the probe to the positive object and see if its potential is 2 volts. Now touch the 

probe to various points between the two objects and see if the voltmeter reads voltage values 

between 0 and 2 volts. Ask your instructor for help if the system isn’t functioning properly.  

You are now ready to make a potential map of the first configuration. [Note that there is a 

sample potential map on page 6, though it is for the case of charges on two perpendicular planes] 
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Using a sheet of graph paper in your lab notebook (be sure to use a full page per map), establish 

an origin and X and Y axes identical to those on the conducting paper (your graph should be a 

smaller size image of the conducting paper). [The conducting paper has a coordinate system 

printed on it. The origin is in the lower left hand corner; the X-axis is along the bottom edge of 

the paper and extends from the origin to 28 cm; and the Y-axis is along the left hand edge of the 

paper and extends from the origin to 20 cm. You can identify any point on the paper by giving its 

X and Y coordinates.] Sketch the point charge and the plane in their proper positions and label 

them with their potential values (one will be 0 volts and the other will be 2 volts). Now use the 

voltmeter probe to find a point along the center line (the line whose Y-coordinate is 10 cm) that 

has a potential of 0.4 V. Mark that point with white ink on the conducting paper. Plot this point on 

your graph also and label it 0.4. Now find other points that also have potentials of 0.4 V. Mark 

them with white ink as well as plot them on your graph and label them 0.4. When you have 

enough of these 0.4 V points, you will see that they can be connected by a smooth curve -- an 

equipotential line. Draw the 0.4 V equipotential line. Note that for some potential values the 

equipotential lines will form closed curves, for others they will not. (If the paper were large 

enough, all equipotential lines would be closed.) When measuring the potential, avoid touching 

the conductive paper by your hand. 

Use the procedure described above to draw the equipotential lines for at least 5 different 

voltages (0.4 V, 0.8 V, 1.2 V, …) Some equipotential lines require just a few points to determine 

their shape; others may require more points. 

On the potential map you have constructed, draw electric field lines (the number of lines 

drawn should be between seven and ten). Remember that field lines start on positive charges and 

end on negative charges and that they are perpendicular to equipotential lines. Be sure to draw 

an arrow on each electric field line indicating the direction of the field (electric fields point 

from positive to negative charge).  

 

b) Two charged planes with an uncharged conducting sphere between them 

Construct a potential map and draw electric field lines for configuration b) two charged planes 

and an uncharged conducting sphere between them. For this case, connect the battery to each of 

the planes but not to the sphere -- this causes the sphere to be uncharged. Be sure to measure the 

potential of points on the sphere and inside the sphere. Look carefully at the region surrounding 

the sphere when measuring potential and when drawing the field lines.  

 

c) Two point charges: three-dimensional potential maps  

You will now make a three-dimensional surface map of the electrical potential for 

configuration c). [A three-dimensional map for configuration (a) (two point charges) is on page 8-

8.] Open an EXCEL spreadsheet and in the first row enter the numbers 0, 2, 4, 6, ..., 28. This row 

contains the X axis scale markings. In the first column enter the numbers 0, 2, 4, ..., 20. This 

column contains the Y axis scale markings. To make all of your data visible on the screen, select 
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all of the cells on the spreadsheet (you can do this easily by clicking on the point where the row 

header and column header come together), choose Column Width from the Format menu, and 

enter a column width of 4. The spreadsheet should now look like the following: 

 

Now place the voltmeter probe at the point (0, 0) on the conductive paper. Enter the voltmeter 

reading in the cell corresponding to X = 0 cm and Y = 0 cm. Repeat for all of the other 

spreadsheet cells.  

Select all of the data in the spreadsheet (including the first row and column) and then click on 

the Insert tab, and then select the Recommended Charts icon, and choose the All Charts tab. 

Select the Surface chart on the left, and then select the 3-D Surface graph. Use an appropriate 

description of the charge configuration for the Chart Title. You will need to select the graph and 

then click on the Plus Sign to the right where you can edit or add Chart Elements, and click the 

box for Axis Title to show boxes for axes titles. For the axis titles let the horizontal axis be X, let 

the axis going into the paper be Y and let the vertical axis be V (for voltage). Select FINISH and 

you should now see a three-dimensional surface graph of the electrical potential inserted on to 

your worksheet.  

Right click on the chart and select 3-D Rotation. A window will open off to the right on your 

spreadsheet that allows you to change the X rotation, Y rotation, and perspective of your graph. 

Adjust the view so that you get the best picture of the potential graph. You can make other 

changes in the graph using selections from the CHART menu.  

The magnitude and direction of the electric field at a given point can be determined by 

examining the slope of the three-dimensional surface graph of the potential at that point. Imagine 

that you were standing on the potential surface. You try to determine the slope by measuring the 

change in height of the surface as you move a given distance from the point. You quickly notice 

that the slope of the surface will depend on the direction in which you move. The electric field 
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vector will point in the direction that gives the maximum negative slope of the potential surface. 

The magnitude of the electric field vector is the absolute value of the maximum negative slope.  

Print the chart and your worksheet, and then sketch the electric field lines on your chart. 

 

Questions 

1. For the electric potential difference of 1.4 V along the straight line between the two point 

charges, calculate the magnitude of the electric field using the equation 
V

E
x

∆
∆ =

∆
.  

2. For the electric potential difference of 0.6 V along the straight line between a plane and a 

point charge, calculate the magnitude of the electric field using the equation 
V

E
x

∆
∆ =

∆
. 
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Lab 4: Capacitors 

 

Equipment: 

1. Low voltage DC/AC power supply  

2. Three 47 μf capacitors 

3. 1 DMM 

4. LCR hand held meter 

5. Differential voltage probe 

6. Logger pro 

7. Parallel plate capacitors (Aluminum) 

8. 5 transparent sheets 

9. Vernier Calipers 

10. Cylindrical aluminum capacitor (homemade) 

11. Connecting wires and alligator clips 

12. Bread board 

 

I. Capacitors and Dielectrics  

a) Parallel Plate Capacitors  

The capacitance of a parallel plate capacitor is given by the following equation:  

                        0
K A

C
d

ε
=   

where K is the dielectric constant, 0ε  = 8.85 x 10-12 C2/N·m2, A is the area of the plates, and d is 

the separation distance between the plates. You will examine the effect of area and distance on 

capacitance using a capacitor made of two pieces of aluminum separated by sheets of plastic. You 

should be able to verify the general dependence of C on A and d.  

Take the two pieces of aluminum and one sheet of plastic and build a parallel plate capacitor. 

Sandwich the plastic between the aluminum plates and make sure that one plate is directly on top 

of the other. Connect the wires from the LCR meter (set to measure capacitance) to the two 

screws in the aluminum plates. [Be careful not to let any part of the lower plate touch any part of 

the upper plate.] Observe the capacitance value (it should be in the neighborhood of 1 to 3 

nanofarads, 1 nF = 1×10-9 farad). Now while watching the meter, apply pressure to the upper 

plate. The capacitance value changes. Does it increase or decrease? Can you explain this change?  

 

You now see why it is difficult to obtain reliable quantitative results for this type of capacitor -- 

the value of d is not simply the thickness of the plastic but also includes the thickness of the air 

spaces on either side of the plastic. Put a weight on top of the upper plate. This will press the 
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capacitor together, reduce the air spaces, and allow us to obtain more reliable measurements. 

Allow 15-20 seconds for the capacitor to compress and then observe the value of the capacitance. 

Record the capacitance value. You will now add 4 additional sheets of plastic (for a total of 5) and 

measure the capacitance. Based on the capacitance equation, what do you predict the capacitance 

will do -- increase or decrease, and by how much? Add the plastic and measure the capacitance.  

Now, keeping the 5 sheets of plastic between the plates, slide the upper plate across the lower 

one until the overlap area is one half of the area of a single plate. Observe the value of the 

capacitance. Does the change in capacitance correspond to the change in area? Try other values of 

the area, and record your results. 

 

b) Cylindrical Capacitors  

The capacitance of a cylindrical capacitor is given by the following equation:  

02

ln( / )

L
C K

b a

πε
=  

where K is the dielectric constant, L is the length of the cylinder, b is the radius of the outer 

cylinder and a is the radius of the inner cylinder. 

You will be given a cylindrical capacitor made of aluminum foil wrapped on the outside and 

inside of a plastic pipe. Use Vernier calipers to measure the inner and outer diameters of the 

cylinder. Calculate the dielectric constant, K, of the plastic tube in your capacitor, and then 

compare your measured value to the reported value of plastic (K ~ 3). Does your measured value 

of K for the plastic come near the expected value?  

 

II. Combinations of Capacitors  

a. Equivalent Capacitance  

Capacitance in parallel 

 

Next, measure the capacitance of each of the three 47 μF capacitors. Label them as #1, #2, and 

#3. You will note that the measured values are not exactly the same as the labeled (nominal) 

values. This is a fact that you need to realize -- nominal values are not exactly the same as actual 

values. Often you may need measure the values of electrical components you are using, and use 

those measured values in all calculations.  
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Using the concepts discussed in lecture and described in the text, predict the equivalent 

capacitance of the three capacitors when connected in parallel (be sure to use the measured values 

in your calculations). Using the breadboard (see page 7 for information on how to use the 

breadboard), connect the three 47 μF capacitors in parallel. (Be sure that the negative sides of the 

capacitors are connected together.) Measure the equivalent capacitance (the capacitance of the 

entire combination) using the capacitance meter. How close does the actual value come to your 

prediction? They should be very close -- if not, find out what went wrong.  

 

Capacitance in series 

 

Repeat the above for the three capacitors in series. (Connect the positive side of each capacitor to 

the negative side of its neighbor.)  

 

Capacitance in series and parallel combination 

 

Now connect two of the capacitors in parallel and then connect this parallel combination to the 

third in series (a series-parallel combination). Measure the equivalent capacitance and compare 

with the theoretical prediction.  

 

b. Voltage measurements  

Computer Measurement of Voltage  
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• Connect the DMM (set to function as a voltmeter) directly to the power supply.  

• Open up the Logger Pro program on your computer.  

• Once you have inserted the probe into the Lab Pro interface, check to see if the program 

has recognized the probe as a voltage probe connected to Ch. 1. If it hasn’t, then you need 

to click on the icon for the Lab Pro interface and choose the “Voltage sensor – 

Differential voltage” for Ch. 1. Once the computer knows that this probe is connected, 

the program should insert a graph of Potential (V) vs. Time on the right of your screen 

(typically with a range from -5 to +5 volts), and also a Voltage meter in the lower left 

hand corner of your screen.  

• Keep the voltage probe connected to the power supply, and continue to use the DMM to 

monitor the voltage of the power supply. Set the scale of the vertical axis of your graph 

from -5 to +5 volts, if it isn’t already. Then, set the time duration of the experiment to 60 

seconds by going to Experiment->Data Collection, and then setting the time duration to 

120 seconds. Also, change the data rate in that same menu to 2 points per second. 

• Disconnect the voltage probes from the power supply -- the Voltage 1 display should be 0. 

If it is not, click the zero icon button at the top of the graph window (If you do not see the 

zero icon, then click on ExperimentSet up sensorsShow all interfacesCh 

1zero). It is a good idea to check the zero of the voltage probes periodically to make 

sure the calibration hasn’t “drifted” by a small amount.  

• Reconnect the voltage probes. Press the COLLECT button and the computer will begin 

collecting voltage data and plotting it on the screen. Set the power supply to 2.50 volts 

(using the DMM). What is the computer voltage reading? (It will probably be close to, but 

not exactly equal to 2.50 volts. If the computer reading differs significantly from the 

DMM reading, let the instructor check the computer calibration.) Does the computer 

voltage reading remain steady or does it constantly change? A constantly changing 

reading is known as “jitter” and is normal for the type of computer data acquisition system 

we are using. [More expensive computer data acquisition systems would have a very small 

jitter.] With the power supply set at 2.50 volts, let the computer system take data for 120 

seconds. A quantitative measure of the jitter can now be obtained by clicking on the 

Statistics button in the second row of the menu bar. Record the Min, Max, and Mean 

values. The difference between the Max and Min is the magnitude of the jitter. Divide the 

jitter magnitude by the Mean voltage reading and multiply by 100 to obtain the jitter as a 

percentage of the voltage reading.  

• Change the power supply setting and see if the computer “tracks” (follows) the changes 

for voltages ranging from 0 to 5 volts.  

 

Voltage measurements across capacitors 

Capacitors connected in series  
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Predict what the voltage of each capacitor should be when they are connected as shown in the 

figure below. Connect the three 47 μF capacitors together in series as shown in the figure, but do 

not connect them to power supply at this time. Make sure that the polarity of the capacitors 

matches the polarity shown in the figure. Discharge each capacitor individually by briefly 

touching the two ends of a wire simultaneously to both sides of the capacitor (this allows any 

positive charge that might be on the capacitor to flow to the other plate and neutralize the negative 

charge). Now connect the capacitors to the power supply. 

 

 

Measure the voltage across each capacitor using the voltage probe. How do your predictions 

compare with the actual measurements?  

 

Capacitors connected in parallel 

Predict the voltage of each of the three capacitors when they are connected in parallel. Now 

connect the three capacitors in parallel, discharge each one, and connect the combination to the 

power supply as shown in the figure. Make the measurements and compare theory and 

experiment. 

 

Capacitors connected in Series-parallel combination 

Now repeat the above with the series-parallel combination of the three capacitors shown in the 

figure. 
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c. Voltage Multiplier 

  

Connect the three capacitors in parallel, discharge them, and then charge them up by connecting 

them to the power supply. Disconnect the power supply and quickly reconnect the three 

capacitors in series (be sure that the positive side of one capacitor is connected to the negative 

side of the next). Measure the voltage of the three capacitors in series. (You must perform the 

above operation quickly because when a charged capacitor is disconnected from its charging 

source and connected to a voltmeter, it will lose its charge fairly rapidly.) If you could do this 

reconnection with zero elapsed time, you would find that the voltage across the three capacitors in 

series is three times the battery voltage. This process can be used to make a voltage multiplier. If 

you have N identical capacitors, you can multiply a given voltage by N. 
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The Breadboard  

Breadboards allow us to make connections easily and quickly between a variety of electrical 

components -- resistors, capacitors, wires, switches, integrated circuits, etc.  

Two electrical components can be connected together by inserting one of the lead wires from 

each component into one of the sockets in the same five-socket group. The connection is quick 

and solid and can easily be changed if needed. You can make as many breadboard connections on 

the breadboard as space will allow. 
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Here we show how an electronic circuit is realized on a breadboard. 
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Lab 5: DC Circuit I 

 

Equipment: 

1. Low voltage DC/AC power supply  

2. 2 DMMs (One grey and one orange) 

3. Wire wound resistors 50 Ω, 100 Ω 

4. Carbon resistor 1000 Ω 

5. 1 Analog DC voltmeter (1.5/15/150 volt) 

6. 1 Analog DC ammeter (15/150/500 mA) 

7. A glass wet cell with ceramic cover with clamped metal electrodes (copper:zinc) 

8. Dilute sulphuric acid 

9. Dry cell 

10. Voltage probe 

11. Current probe 

12. Logger pro 

13. Connecting wires, alligator clips 

14. Breadboard 

 

Introduction 

Electrical circuits play a fundamental role in the practical application of electricity and 

magnetism. If you spend a few minutes contemplating the ways in which electrical circuits affect 

your life, you will soon realize that modern civilization could not exist without them. We can 

group the applications of electrical circuits into several major categories:  

1) Energy Transfer -- The potential energy stored in coal, oil, natural gas, flowing water, 

sunlight, etc., is transformed into electrical energy, which is then transported over power lines to a 

“user” where the energy is transformed into more usable forms such as light, sound, heat, and 

motion.  

2) Information Transfer -- Information is transformed into electrical signals which are 

transmitted (over wires, fiber optic cables, or even through empty space) to a receiver where the 

signals are processed and the original information is recovered).  

3) Control -- Electrical circuits are used to control the operation of a variety of devices -- e.g., 

door openers, water valves, airplane flaps, etc.  

4) Information Processing -- Computers (from mainframes to micros) use electrical circuits to 

gather, analyze, store, and display information of all types.  

5) Scientific Analysis -- Physical variables (such as velocity, acceleration, force, pressure, 

temperature) are often transformed into electrical signals which can then be analyzed by a variety 

of electrical instruments.  
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Electrical circuits 

A basic electrical circuit is shown below. All electrical circuits, no matter how complicated, 

contain the same fundamental elements as this one. 

 

The EMF (Electromotive Force) is the source of electrical potential energy that drives the 

charge carriers through the circuit. It is connected by metallic wires to an electrical device (a light 

bulb, a carbon resistor, a motor, a loudspeaker, etc.) or several such devices connected together in 

some way. The strength of the EMF is called its potential difference or voltage and is measured in 

volts.  

The EMF creates an electric field in the circuit that starts at the positive (high energy) side of 

the EMF and ends at the negative (low energy) side. This field exerts an electrical force on the 

charge carriers in the circuit and causes them to move through the circuit. This movement of 

charge is called electrical current and is measured in amperes. 

The electrical devices oppose (or resist) the motion of electrical charge through them. The 

amount of this opposition is called the resistance of the device and is measured in ohms.  

An electrical circuit can be thought of as an energy transfer system. The EMF puts energy into 

the current flowing through it and the current gives up this energy in the process of moving 

through the electrical devices. Energy is thus transferred from the EMF to the devices. The energy 

given up by the current as it passes through an electrical device is determined by measuring the 

potential difference or voltage between the ends of the device.  

 

Electrical circuit measurements  

The fundamental quantities used in describing and analyzing DC circuits are voltage, 

current, and resistance. Measurements of these quantities are made using various types of 

electrical instruments. Voltage is measured by a voltmeter, current by an ammeter, and resistance 

by an ohmmeter. Some meters are devoted entirely to making measurements of one of the above 

quantities. Other meters can make measurements of two or more of the quantities and are called 

multimeters. 

Meter readouts may be digital or analog. Digital scales are read directly. Analog scales are 

generally estimated to 1/10 of the smallest scale division. When recording a meter reading, give 
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the magnitude of the measurement to the correct number of significant figures as well as the unit 

of the measure.  

When making a measurement with any electrical meter, one must give careful consideration 

to the following factors:  

1) Function -- Is the meter to be used to measure voltage, current, or resistance?  

2) Range -- The term “range” refers to the range of values that can be measured by the 

instrument. For example, a voltmeter set on a 10 volt range can measure voltages between zero 

and 10 volts. The range setting of a meter thus indicates the maximum value that can be 

measured using that setting. Most meters have several ranges of operation. If you are not sure 

which range to use, start with the highest one. Then reduce the instrument setting to the lowest 

possible range which still contains the value you wish to measure -- this is the optimum or best 

range setting for that particular measurement and will give the most precise measurement 

possible. (The term “precision” refers to the number of significant figures in the measurement.)  

3) Polarity -- Current and voltage measurements are directional -- i.e., both positive and negative 

values are possible. Voltmeters must be connected so that the + terminal of the meter is connected 

to the high potential side of the element being measured. Ammeters must be connected so that 

current flows into the + terminal of the meter.  

4) Placement -- Meters must be properly placed in a circuit to make each type of measurement. 

Proper meter polarity and placement will be illustrated after a brief discussion of circuit diagrams.  

Circuit diagrams are figures or drawings that depict particular electrical circuits. You will need to 

become familiar with circuit diagrams and be able to construct a circuit using the diagram as a 

guide. The following symbols are used to represent electrical quantities: 

 

The electrical devices that we will examine in this exercise can be characterized entirely by their 

resistance. Thus, we often speak of an electrical device as “a resistance”. Lines joining voltage 

sources and resistances represent connecting wires. The circuit diagram below shows a resistance 

of R ohms connected to a voltage source of strength E volts with a current of I amps flowing in 

the circuit. 
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The following diagrams show the proper polarity and placement of each type of electrical 

meter (note the symbols used to represent each type of meter): 

 

The following diagram shows an electrical circuit with meters properly positioned to make 

several different measurements: 
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Carbon resistors 

     

 

 

Procedure 

[Important notes: 1) Check with your instructor if you are not sure that a circuit is properly 

connected. 2) When using an electrical meter to measure an unknown electromagnetic quantity, 

start your measurement with the meter at its highest range setting, and lower the setting until you 

obtain the optimum range.  

Using the diagram on page 4, familiarize yourself with the operation of the Digital Multimeter 

(DMM).  

 

I. Voltage measurements 

a) Measuring the strength of a voltage source  

The strength of a voltage source is defined as the voltage difference between its (pos) + and (neg) 

– terminals when no current is flowing through it. When a voltmeter is used to measure the 

strength of a voltage source, it will draw a small current and the resulting measurement will be 

only approximate. The approximation, however, will be a very good one.  

 

i) Wet cell 
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Construct a wet cell as shown in the figure above. It may smell unpleasantly. In such cases you 

may dilute the sulfuric acid. Measure its strength (voltage) using both the digital voltmeter 

(DMM) and the analog voltmeter. Connect the alligator clips directly to the metal plates. To get 

some practice in using different range settings, use as many different ranges as possible on 

both instruments. Record the measurements for each range. (CAUTION: Don’t leave the analog 

voltmeter connected to the wet cell for more than a few seconds. It has a nasty tendency to drain 

the wet cell’s energy.)  

Which metal is the + terminal of the cell?  

 

Which DMM range gives the most precise measurement (i.e. which range gives the measurement 

with the most significant figures)?  

 

Which analog voltmeter range gives the most precise measurement?  

 

ii) Dry cell 

Repeat part i) for a dry cell. Which terminal is positive?  

For each meter, which range gives the most precise measurement? 

 

iii) A power supply is a usually variable source of voltage. Its circuit symbol is shown below. 

(The arrow indicates that the strength of the voltage source is variable.) 

                                                                       

Many power supplies have built-in voltmeters. In most cases, these meters are not very 

accurate and should not be used to measure the output voltage of the supply. You will now 

examine the accuracy of the meter of the laboratory power supply.  

Connect the DMM to the power supply’s output terminals. Use the DMM, at its optimum 

range setting, to set the power supply to 1.0 volt. Now read the built-in voltmeter and record its 
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reading. (The built-in meter reading will normally be different than the DMM reading.) Repeat 

for power supply settings of 2.4, 5.0, 7.5, 10.0, 13.2, 15.0, 20.0, and 24.0 volts.  

 

In any measurements we make in this laboratory, we will always assume that the DMM is the 

most accurate meter available. Compare the DMM readings with the readings of the power 

supply’s built-in meter. Based on your comparison, answer the following question: When using 

the power supply, why should you always use a separate voltmeter to measure its voltage?  

 

b) Measuring the voltage across a resistance  

Construct the circuit shown below with the power supply at its zero setting. Then use a DMM 

to set the power supply to 1.00 volt.  

 

1) Measure the voltage across the 100 Ohm resistor using another DMM on its optimum range 

setting. Record this voltage. Repeat for power supply settings of 2.00, 3.00, 4.00 and 5.00 volts. 

What numerical relationship exists between the voltage across the 100 Ω resistor and the voltage 

of the power supply? (Try looking at the ratio of the two. Does this ratio remain constant?)  

2) (Optional) Repeat step 1 using the analog voltmeter. 

3) Repeat step 1 using computer voltage probe 

Which method gives the best results? 

 

II. Current Measurements  

Analog ammeters are very sensitive instruments (voltmeters are rugged by comparison). An 

analog ammeter can be destroyed if more current than it is designed to measure is allowed to flow 

through it. (A DMM used as an ammeter will usually have a fuse which protects the meter in case 

of overload.) Please be careful when using any ammeter! To avoid excessive currents, follow 

these two rules: (1) Always start with the power supply set at zero and increase it slowly while 
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carefully watching the ammeter reading; (2) Start with the highest ammeter range setting possible 

and go to lower ranges only when you are sure the current is less than the maximum for that 

setting.  

Construct the following circuit with the power supply set at zero. 

 

 

 

Have your instructor check your circuit before you continue.  

 

(1) Using 0- 2, 0-20, 0-200 range settings for the DMM (make sure it is set to function as an 

ammeter), measure the current in the circuit for power supply settings of 1.0, 2.0, 3.0, 4.0, and 5.0 

volts. Record the measurement on each range. Make one column for Voltage, three columns 

for Current with each range and three columns for Resistance (R=V/I). Compare resistance 

value with the given value. 

 (You will notice that for a given voltage setting the current measurement will change as you 

change the ammeter range. This is due to the internal resistance of the ammeter, which is typically 

larger for a higher range of current. Don’t worry about it.)  

(2) (Optional) Repeat part (1) using the analog ammeter. (Start with the highest range setting --

100 mA. Don’t go to a lower range setting unless you’re sure that the current is within that lower 

range.)  

(3) (Optional) Repeat part (1) using computer current probe.  

 

Carbon resistor – 1000 Ω 

Complete the circuit using 1000 Ω carbon resistor placed on breadboard using the circuit 

shown above for 100 ohm resistor.  Connect the voltage probe and current probe to the computer.  

(a) Find voltage and current across the 1000 Ω resistor using computer voltage probe and 

computer current probe for the power supply voltages 1 V to 5 V in steps of 1V.  Note that the 

current probe may require 7 mA minimum current. 

(b) Calculate resistance and compare with the given value. 
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DIGITAL MULTIMETER 

 
General Controls  

1 Power Switch -- turns DMM on and off  

2 AC/DC select switch -- sets DMM to measure either direct or alternating current quantities  



PHYSICS 213  Lab 5 

Page 10 of 10 

 

Function Selection  

3 Voltage select switch -- sets DMM to act as a voltmeter  

4 Current select switch -- sets DMM to act as an ammeter  

5 Resistance select switch -- sets DMM to act as an ohmmeter  

Range Selection  

6 Range selection switches -- select the range of the measurement  

7 Voltage range labels -- indicate range of DMM as voltmeter  

8 Current range labels -- indicate range of DMM as ammeter  

9 Resistance range labels -- indicate range of DMM as ohmmeter  

Display  

10 LCD digital display -- the instrument reading appears here as a decimal number. Use the 

function and range selected to determine the units of the measurement.  

Overrange indication: If the value of the quantity being measured is too large for the range you 

have selected, the DMM will display the value “1.“ or “1”.  

Terminals  

11 + voltage terminal, resistance terminal  

12 + current terminal  

13 – current terminal, – voltage terminal, resistance terminal  

To measure voltage: use terminals 11 and 13  

To measure current: use terminals 12 and 13  

To measure resistance: use terminals 11 and 13 
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Lab 6: DC Circuits II 

 

Equipment: 

1. Low voltage DC/AC power supply  

2. Wire wound resistors 10 Ω, 100 Ω 

3. 2 DMMs (one orange and one grey) 

4. New voltage probe 

5. New current probe 

6. Logger pro 

7. A small 5 volt bulb 

8. Barrel diode 

9. Connecting wires, alligator clips 

 

Introduction  

This laboratory exercise focuses on resistance. You will use two different methods to measure 

the resistance of circuit elements. The resistance of any electrical element is defined as the 

voltage across the element divided by the current flowing through it:  

R =V/I 

The unit of resistance is the ohm (Ω). You will often see the abbreviations kΩ and MΩ -- these 

stand for kilo-ohm (one thousand ohms) and mega-ohm (one million ohms).  

 

Measurement of resistance  

In order to measure the resistance of an electrical element, we arrange to have current flowing 

through the element and carefully measure the magnitude of the current as well as the voltage 

(potential difference) across the element. Dividing the voltage by the current gives the resistance 

of the element for that particular current. If we make the same measurement for a different 

current, the resistance for the new current may be the same as the previously measured resistance 

or it may be different. Circuit elements whose resistance does not change with current are called 

ohmic resistors.  

In order to see clearly how the resistance of an element depends on the current, we construct a 

voltage versus current graph (V-I graph) for the element. The resistance of the element at any 

point on the graph can be found by dividing the voltage at that point by the corresponding current. 

If the V-I graph for an element is a straight line, the element is an ohmic resistor and the slope of 

the graph is equal to the resistance of the element. If the graph is not a straight line, the element 

has a non-ohmic resistance and the slope does not have any simple relationship to the resistance.  

 

Measurement of resistance using the voltmeter-ammeter method  
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We shall use this method to examine the resistance of the 100 Ω wirewound resistor. 

Construct the circuit shown below. 

 

To construct the V-I graph for the 100 Ω resistor, the power supply will be set to a number of 

different values and the voltage across the element and the current through it will be measured for 

each setting. The voltage and current data will then be plotted on a V-I graph.  

Start with the power supply set to zero (you may need to disconnect the power supply from 

the circuit to obtain zero voltage). The voltage and current will both be zero and you should 

record these values in your laboratory notebook. Then set the power supply so that the voltmeter 

across the resistor reads 0.5 volts. Read the current value given by the ammeter. Repeat for 

voltages of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 volts. 

Use the Excel to plot V (on the vertical axis) versus I (on the horizontal axis). [Don’t forget to 

put proper axis labels and axis units on your graph.] The data points should lie on a straight line 

(if they don’t, you may have done something wrong!). This straight-line V-I graph shows that the 

100 Ω wire-wound resistor is an ohmic resistor -- its resistance is the same for all currents. Use 

the curve fitting capabilities of Excel to determine the slope of the best fit straight line. This slope 

will be equal to the resistance of the resistor in ohms if you entered your current data in units of 

amps. If you entered your current data in units of milliamps, you must multiply the slope by 1000 

to obtain the resistance in ohms. Give your graph a title. Use a title such as “V-I graph for 100.0 

Ω resistor”. Print out a copy of your graph-1.  

 

Measurement of resistance using the computer method  

The computer can be used to collect voltage and current data and plot it as a V-I graph. As you 

are making these measurements, think about the advantages and disadvantages of the computer 

measurements compared to the measurements made using the voltmeter-ammeter method.  

Construct the following circuit. 

10 Ω Ohmic resistor 
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• Remove one of the two graphs in your program, and use the command “page” and “Auto 

Arrange” feature to make that graph fill up your screen. Change the vertical axis variable 

to Potential (with axis limits of -5 to +5 volts) and the horizontal axis variable to Current 

(with axis limits of -0.200 A to +0.200 A) by left clicking on each axis label.  

• Finally, go to the Data Collection panel (with the stopwatch icon) and change the length to 

120 seconds and your data collection rate to 15 samples per second.. The computer is now 

ready to automatically make a V-I graph for the 10.0 Ω wirewound resistor (PLEASE 

NOTE THAT THESE RESISTORS CANNOT TAKE MORE THAN 0.2 AMPS OF 

CURRENT, AND WILL BURN WITH MORE).  

• THE FOLLOWING STEP 1 AND STEP 2 MEASUREMENTS SHOULD BE DONE IN 

120 SECONDS 

• STEP 1: With the power supply set to zero, press the COLLECT button. Slowly increase 

the power supply setting until the voltage reaches +2 volts, and then decrease it slowly to 

zero. Repeat this couple of times. The graph you see should be a straight line in the first 

quadrant. (It won’t be perfect because of the jitter present in both the voltage and current 

measurements.)  

• STEP 2: Now set the power supply to zero and reverse the power supply connections -- 

this will cause both the current and voltage across the resistor to become negative. Slowly 

turn the voltage down to -2 volts and back to zero. Repeat couple of times. You should see 

a continuation of the straight line in the third quadrant.  

• Then choose the “Linear Fit” button on the second row of menu items. A best fit straight 

line will appear on the graph along with a function of the form  

 0 1y b b x= +  

The resistance of the 10.0 Ω resistor is equal to b1-- this number should be close to 10.  

• Double-click on the graph and select the “Graph Options” tab. Give your graph a title. Use 

a title such as “V-I graph for 10.0 Ω resistor”. From the FILE menu, select Page Setup 

and set the graph for Landscape orientation. Select Print Graph from the FILE menu 

and print the graph-2.  

• Repeat the above for the two elements (barrel diode and mini lamp) listed below. Since 

neither of these elements is an ohmic resistor, you won’t need to make a linear fit for these 

graphs. Be sure to use both positive and negative voltages and currents. Don’t forget to 
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print the graphs-3 and graph-4 for these elements. Explain briefly in your lab report 

why these elements behave the way they do, and how their behavior might be useful.  

 

Barrel diode – Non-ohmic resistor 

• Connect the diode in the circuit as shown in the figure below. To keep from burning the 

diode out, don’t let the current exceed 500 mA. You must be alert to the fact that when the 

voltage is applied to the diode in one direction, the current takes a sudden jump from zero 

to several hundred milliamps. If you are not careful, the 500 mA limit can be exceeded. 

Take care that your voltage do not increase beyond 0.9 V. To obtain a good graph, make 

sure that when you are increasing or decreasing the power supply setting you do it very 

slowly. The whole measurement should be done in 120 seconds. 

 

 

Mini lamp – Non-ohmic resistor 

• Change the horizontal axis scale to (–200 mA  200 mA). Don’t let the voltage exceed 5 

volts. The lamp burns out easily. To obtain a good graph, make sure that when you are 

increasing or decreasing the power supply setting you do it very slowly. The whole 

measurement should be done in 120 seconds. 

+ - 



PHYSICS 213  Lab 7 

Page 1 of 9 
 

Lab 7: DC Circuits III 

 

Equipment: 

1. Low voltage DC/AC power supply  

2. Wire wound resistors 10 Ω, 15 Ω, 25 Ω 

3. 1 DMM (Orange) 

4. Very thin copper wire (1 m in length) 

5. Screw gauge (micrometer) 

6. New voltage probe 

7. New current probe 

8. Logger pro 

9. LCR meter 

10. Three 47 μf capacitors 

11. 100 KΩ resistor 

12. Bread board 

13. Connecting wires, alligator clips 

 

I. Resistance measurements with an ohmmeter  

An ohmmeter measures the resistance of a circuit element by internally applying a small 

known voltage to the element and then measuring the current that flows through it. The ohmmeter 

then calculates the resistance by dividing the voltage by the current. The resistance value is then 

displayed on the meter readout. Thus, an ohmmeter measures only one point of the V-I graph of 

an element and, unless the device is ohmic, we know the value of the resistance only at that point. 

For this reason, ohmmeters are normally used only to measure resistances of elements that are 

ohmic.  

As shown in the figure below, the ohmmeter should be connected directly to the device whose 

resistance you are measuring -- no voltage sources or other elements should be in the circuit! 

 

 

 

Be careful in reading resistance values. If for example, the DMM is set on the 20 kΩ range 

and it displays the number 5.36, the value of the resistance is not 5.36Ω but rather 5.36 kΩ = 

5,360Ω.  
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• Use the DMM set to function as an ohmmeter to measure the resistance of R1, R2 and R3 

and record your values.  

• For each of the following combinations of resistors, predict what the equivalent resistance 

of the combination will be. Then use the ohmmeter to measure the equivalent resistance. 

Explain any differences between your prediction and the measured value.  

 

i) R1, R2, and R3 connected in series  

 

 

 

Predicted value: 

 

Measured value: 

 

ii) R1, R2, and R3 connected in parallel  

 

 

 

Predicted value: 

 

Measured value: 

 

iii) R1, R2, and R3 connected in the series/parallel combination shown in the following figure 
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Predicted value: 

 

Measured value: 

 

 

 II. Resistivity  

The resistance of a piece of wire is given by 

 
L

R
A

ρ
= , 

where ρ is the resistivity of the material of which the wire is constructed, L is the length of the 

wire between the connection points (the wire was cut to be 1.0 m in length), and A is the cross-

sectional area. Make appropriate measurements and determine the value of the resistivity of the 

wire on your table. Use the LCR meter to measure the resistance of the wire provided. (You will 

probably need to use a screw gauge to measure the diameter of the wire. Information on the use of 

a screw gauge is provided at the end of this laboratory exercise.) Show your instructor the ρ 

value you calculate, and compare to the accepted value of ρ (1.68 x 10-8 Ω.m) for copper.  

Please note: 1) The screw gauge we currently have has a scale of 0.001″/div. 2) Measure the 

resistance of the bare wire, with no posts or cables. 3) Measure the diameter of the bare wire, with 

no coatings. 

 

III. Resistances in Series  

In this section, you will examine the current and voltage relationships of resistors connected in 

series. Remember that for resistors in series, currents are equal and voltages add. When resistors 

are connected in series, the current flowing through each resistor is the same and the voltages 

across each resistor add up to give the total voltage across all of the resistors.  

Construct the following circuit and set the power supply to 5.00 volts. After every change you 

make in this circuit, check to make sure that the power supply voltage is still at 5.00 volts. 
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Use voltage probe to measure the voltages across each resistor -- i.e., measure Vab (this is V1 -

- the voltage across resistor 1), Vbc (V2) , and Vcd (V3). Do these three voltages add up to 5.00 

volts (i.e., does V1 + V2 + V3 = 5.00)?  

Now use current probe to measure the current through each resistor. To do this, you will have 

to open the circuit and insert the ammeter probes at points a, b, and then c. The current at point a 

will be I1 (the current through R1), the current at point b will be I2, and the current at c will be I3. 

Are all of the currents the same (i.e., does I1 = I2 = I3)?  

You may find some small discrepancies in your results -- the voltages may not add up to 

exactly 5.00 volts or the currents may not be exactly equal to each other -- these are due to the 

fact that the probes have some internal resistance which can produce small alterations in circuit 

behavior. These discrepancies, however, should be very small.  

 

IV. Kirchhoff’s laws  

In this part, you will see if Kirchhoff’s Laws are obeyed by the currents and voltages in a 

series/parallel circuit. Construct the circuit shown and set the power supply to 5.00 volts. After 

every change you make in this circuit, check to make sure that the power supply voltage is still at 

5.00 volts. 
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Measure the current through each resistor and the voltage across each resistor.  

 

a) Kirchhoff’s Current Law --- Does KCL hold at junction J1? (i.e., does I2 = I1 + I3?)  

 

b) Kirchhoff’s Voltage Law  

Does KVL hold for the closed loop consisting of R2, R1, and the Power Supply? Does KVL hold 

for the closed loop consisting of R3 and R1?  

 

V. RC Circuits 

(a) Charging a Capacitor: 

When an uncharged capacitor is connected to a source of voltage, charge will flow from the 

source to the capacitor until the voltage of the capacitor reaches that of the source. This charging 

process does not occur instantaneously, but at a rate which is controlled by the amount of 

resistance in the circuit. The higher the resistance is, the slower the rate of charging. In addition, 

the rate at which charge flows onto the capacitor decreases with time -- the flow of charge is rapid 

at first but it decreases gradually and becomes almost zero as the capacitor voltage approaches 

that of the voltage source. This behavior is expressed by the equation for the voltage across a 

charging capacitor as a function of time: 

 0( ) 1
t

RCV t V e
− 

= − 
 

 

Where V0 is the voltage of the power supply, R is the resistance in the circuit, and C is the 

capacitance (so that τ = RC is the charging time constant) 
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Use the breadboard to connect a 47 μF capacitor in series with a 100,000 Ω resistor. Use the 

Vernier voltage probe so that you can obtain a graph of the voltage vs. time across the capacitor 

(the black wire to the negative side). Discharge the capacitor by shorting it out. Now, connect a 

wire from the negative side of the power supply to the negative side of the capacitor. Start 

collecting data with your voltage probe, then connect a wire from the positive side of the power 

supply (which should still be set at 3.00 volts) to the free end of the resistor. The capacitor should 

charge in just a few seconds. Now, fit the curve you have obtained for the voltage across the 

capacitor with the expression that most closely matches the theoretically predicted equation. What 

is your experimentally determined time constant, τ ? Report your percentage error for the time 

constant, using the theoretically predicted value as your accepted value. Print out the graph-1. 

Notice what the final voltage across the capacitor is as recorded by your computer voltage 

probe. Discuss in your report why that voltage is less than the voltage coming from your power 

supply. 

 

(b)  Discharging a Capacitor  

If a charged capacitor is disconnected from the charging source, it will (in the ideal case) 

maintain its charge forever. If the two terminals of the capacitor are connected together by a 

conducting pathway, all of the positive charge from one plate will eventually flow to the negative 

plate and the capacitor will become uncharged. The rate at which this discharging process occurs 

depends upon the amount of resistance in the circuit -- the more resistance, the slower the rate of 

discharge. The rate of discharge decreases as the charge on the capacitor (and the voltage across 

the capacitor) is reduced, and becomes zero when the capacitor is completely discharged. 



PHYSICS 213  Lab 7 

Page 7 of 9 
 

 

Use the circuit above with three 47 μF capacitors connected in parallel and a 100 kΩ resistor. 

Use the Vernier Voltage Probe to measure the voltage across the capacitor (the black wire to the 

low voltage side). Set the power supply voltage to 3.0V and charge the capacitor up to the power 

supply voltage (it should reach at least 2.95 V). Then, after hitting Collect in Logger Pro so that 

you will have a record of the voltage vs. time, disconnect the wires that are connected to the 

power supply and connect them directly together. The circuit should now look like the figure 

below. 

 

 

Look at the V versus T data for the discharging capacitor displayed in Logger Pro. Use Curve 

Fitting to determine the Best Fit Function (select only the portion of the curve recorded while the 

capacitor was discharging). Does your graph indicate that the magnitude of the rate of change of 

the voltage decreases with time? How long did it take for the voltage to decrease to 1/3 of its 

initial value? This time interval is called the characteristic time, τ, and it should be equal to the 

value of the resistance multiplied by the value of the capacitance. That is, τ =RC. Print out the 

graph-2.  

Now, repeat the above experiment with just a single 47 μF capacitor. What would you predict 

will happen to the discharge time in this case? Run the experiment. Does the discharge time 

behave like you expected? Why or why not? 
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Screw Gauge - Micrometer 

                                              

A quick guide on how to read a micrometer screw gauge. Similar to the way a vernier caliper is 

read, a micrometer reading contains two parts: 

• the first part is contributed by the main scale on the sleeve 

• the second part is contributed by the rotating vernier scale on the thimble 

 

A typical micrometer screw gauge 

The above image shows a typical micrometer screw gauge and how to read it. Steps: 

• To obtain the first part of the measurement: Look at the image above, you will see a 

number 5 to the immediate left of the thimble. This means 5.0 mm. Notice that there is an 

extra line below the datum line, this represents an additional 0.5 mm. So the first part of 

the measurement is 5.0+0.5=5.5 mm. 

• To obtain the second part of the measurement: Look at the image above, the number 28 on 

the rotating vernier scale coincides with the datum line on the sleeve. Hence, 0.28 mm is 

the second part of the measurement. 

You just have to add the first part and second part of the measurement to obtain the micrometer 

reading: 5.5+0.28=5.78mm. 

 

To ensure that you understand the steps above, here’s one more example: 
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First part of the measurement: 2.5 mm 

Second part of the measurement: 0.38 mm 

Final measurement: 2.88 mm 

Now, we shall try with zero error. If you are not familiar on how to handle zero error for 

micrometer screw gauge, I suggest that you read up on Measurement of Length. 

  

                                                               

The reading on the bottom is the measurement obtained and the reading at the top is the zero 

error. Find the actual measurement. (Meaning: get rid of the zero error in the measurement or take 

into account the zero error) 

Measurement with zero error: 1.76 mm 

Zero error: + 0.01 mm (positive because the zero marking on the thimble is below the datum line) 

Measurement without zero error: 1.76–(+0.01)=1.75 mm. 
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Lab 8: Motion of Charged Objects in Magnetic and Electric Fields 

 

In this laboratory exercise, we will use Interactive Physics to examine the motion of charged 

particles in several different electric and magnetic field configurations.  

Open the Interactive Physics program. In the VIEW menu select Workspace. Turn on Rulers, 

Grid Lines, XY Axes, and Coordinates. The solid lines you see are the X and Y axes -- the Y axis 

is vertical and the X axis is horizontal. The X and Y coordinates of the mouse pointer are given in 

meters at the bottom of the screen. This can be helpful in determining the position of various 

points on the path of a charged object. If the origin of the XY system is not in the center of the 

screen use the Scroll Bars to move it there. Go to the WORLD menu and turn gravity off.  

 

I. Uniform Magnetic Field  

In this part of the laboratory exercise, we will create a uniform magnetic field of magnitude 

2.00 T directed into the screen. It will point in the negative Z direction. (The XYZ coordinate 

system is a right-handed system -- if the thumb of your right-hand points in the X direction and 

the fingers in the Y direction, your palm will face in the positive Z direction.) Since the magnetic 

force on a moving charge is given by 

F = qv × B 

the components of F will be given by  

Fx = -qvyB 

Fy = +qvxB 

This force field can be created by going to the WORLD menu and opening the Force Field 

window. Click the Field radio button and set the Sample Force box to Custom.  

Enter the following equations in the force component boxes:  

 

Fx: -self.charge*self.v.y*2 

Fy: self.charge*self.v.x*2 

 

The quantity “self.charge” is Interactive Physics’ way of representing the charge q; the term 

“self.v.y” is the y component of the object’s velocity vector and “self.v.x” is the x component of 

the object’s velocity vector. The “2” stands for 2 Tesla -- the magnitude of the magnetic field 

vector.  
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a) Click OK to return to the Interactive Physics window. Use the drawing tools to create a small 

circular object. Keep the object size as small as possible. Use Window  Properties for the object 

to specify the following object parameters:  

X = 0 m. 

Y = 0 m. 

Vx = 10 m/s. 

Vy = 0 m/s 

m = 1 × 10-5 kg. (Enter as 0.00001) 

q = +1 × 10-4 C. (Enter as 0.0001) 

Note that the object will start at the origin with a velocity of 10 m/s in the +X direction. Keep 

the origin at the middle of the screen and zoom the screen. 

Predict the size of the circular orbit the object will follow using:  

mv
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Predict the direction of the circular motion (clockwise or counterclockwise) using the right-

hand rule.  

Create time, position and velocity meters by clicking measure  time  Position (X) 

(Expand this)  velocity (All). Click Define  VectorsVelocity to choose the magnitude of 

the object’s velocity vector. Turn TRACKING (WindowAppearance  Track outline) on to 

Every Frame. Use World →Accuracy ~0.001s. 

Run the simulation. Is the path of the object a circle? What is the path’s radius? (Measure 

from the screen.) What is the period of the motion? (Measure from the position graph.) Does the 

velocity magnitude remain constant throughout the motion? (Check on the screen.)  Does the 

object move in the CW or CCW direction? If any of your predictions are incorrect, find out the 

reason.  

Note that we are using the Predict, Observe, Resolve cycle that we used in laboratory 

exercise #1. In this laboratory exercise, you should write your Predictions (with reasons), 

Observations, and Resolutions in your laboratory notebook.  
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Before you change the properties of the object, right click of the object and click exit. 

(Tracking will disappear and object will come to original position) 

 

b) [q = +1 × 10-4 C, m = 2 X 10-5 kg, Vx = 10 m/s, B = 2.00 T.]  

Change the object parameters to match those listed above. Predict the R and T values for the 

object’s motion as well as the direction of motion and then run the simulation. Compare 

prediction with observation and resolve any differences.  

 

c) [q = +2 × 10-4 C, m = 1 × 10-5 kg, Vx = 10 m/s, B = 2.00 T.]  

Predict, observe, resolve.  

 

d) [q = –1 × 10-4 C, m = 1 × 10-5 kg, Vx = 10 m/s, B = 2.00 T.]  

Predict, observe, resolve.  

 

e) [q = +1 × 10-4 C, m = 1 × 10-5 kg, Vx = 10 m/s, B = 1.00 T.]  

Note that we are changing B to 1 Tesla. (You will have to go to the Force Field window to do 

this.) Predict, observe, resolve.  

 

f) [q = +1 × 10-4 C, m = 1 × 10-5 kg, Vx = 20 m/s, B = 2.00 T.]  

Change the initial velocity in the x-direction to 20 m/s and return B to 2.00 T. Predict. observe, 

resolve.  

 

II. Velocity Selector  

The velocity selector will consist of a uniform magnetic field of 2.00 T directed into the 

screen and a uniform electric field of magnitude 10 V/m in the negative Y direction. To create 

this combination of fields, go to the Force Field window and change the magnetic field magnitude 

back to 2.00 T. Add to the Fy equation the term  

–self.charge*10 

This is simply the Y component of the electric force. 

Use the same X, Y, m, and q values used in part Ia. Select a velocity vector that will enable 

the object to pass through the velocity selector without experiencing any change in its velocity 

(either magnitude or direction) -- i.e., the object will move in a straight line at constant speed. Let 

the instructor see this simulation when you have it working!  
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Try the simulation again with a negative charge. Try different values of the mass and charge. 

Does the same velocity work for all of these cases?  

What happens if you use the negative of the velocity used above? Observe the path carefully.  

 

III. Linear Accelerator  

The simplest type of particle accelerator consists of a uniform electric field that is confined to a 

certain region of space. A charged particle is accelerated while in the field and when it leaves the 

field it moves with constant velocity.  

Go to the Force Field window and enter the following:  

Fx: if(and(self.p.x>=0, self.p.x<=1), self.charge*200, 0) 

Fy: 0 

The equation for Fx is in the form of an Interactive Physics “if” function. Such a function has the 

following general form: if(A, B,C) -- If the condition represented by A is true, then the function 

has the value B; if the condition represented by A is false, then the function has the value C. The 

condition A in our equation for Fx is given by an Interactive Physics “and” function which takes 

the following general form: and(D, E) -- If conditions D and E are both true, the and function is 

true; if either D or E is false, then the and function is false.  

The term “self.p.x” stands for the x component of the position of the charged object --i.e., its 

X coordinate. Thus the and function will be true if 0 ≤ X ≤ 1 (i.e., if the X coordinate of the object 

is between 0 and 1). When the object is between 0 and 1 the if function has the value 

“self.charge*200” which is just q*E. (The magnitude of the electric field is 200 V/m.) If the 

object is outside of the region between 0 and 1, the if function gives the value 0.  

We have constructed an electric field that has a magnitude of 200 V/m in the +X direction in 

the region from 0 ≤ X ≤ 1 and that is zero outside that region.  

Use the properties window to make the object start at rest at the origin. Make its charge be           

1 × 10-4 C. and its mass, 1 × 10-5 kg. Give initial velocity Vx as 10 m/s.  Create a Velocity meter to 

measure the magnitude of the object’s velocity vector. Click Define  Velocity to choose the 

magnitude of the object’s velocity vector. 

Before running the simulation, predict the velocity of the object when it leaves the linear 

accelerator. Remember a gain in kinetic energy ( 21

2
mv ) equals a loss of the Potential energy (eV, 

Here V = 200 V) when the force acting is conservative. Equate these two equations to get velocity 

v. Make sure you show your calculation in your lab write up! Also predict how the velocity will 

change when the object is outside the accelerator. Run the simulation. If your predictions differ 

from your observations, resolve the differences. You may need to change the accuracy setting by 

going to WORLD, selecting ACCURACY and then unselecting AUTOMATIC and choosing a 

shorter time step for the calculation. (0.001s, 0.01 m) (Show the simulation to your instructor.) 
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• Make the accelerator 2 meters long instead of 1 meter by writing new Fx with “x<=2”. 

Predict the final velocity and observe the simulation.  

• Try increasing the electric field to 400 V/m and see what happens. (Leave the length of the 

accelerator at 2 meters.)  

 

IV. Cyclotron  

The cyclotron we will construct has a uniform magnetic field of 5.00 T pointing into the 

screen. It fills the entire Interactive Physics universe -- this would obviously be expensive to 

build, but we are not paying for it, so who cares. The electric field is zero everywhere except in a 

small gap that exists in the region –0.10 ≤ X ≤ +0.10. In this gap, the electric force has a zero Y 

component and an X component given by:  

Q*E*COS(2πf*t) 

where f is the cyclotron frequency (f = qB/2πm  2πf = qB/m). The cosine function is used so 

that the electric field will always point in the direction in which the object is moving when it 

crosses the gap -- the object will always be given an energy boost by the electric field. We will 

use a charge of 1 × 10-4 C and an electric field of 1000 V/m -- the value of q*E will thus be 0.1 N.  

The Force Field will be the combination of the magnetic and electric fields shown below:  

Fx: if(and(self.p.x>=–.1, self.p.x<=+0.1), 0.1*cos(2πf*time), 0) - 5e-4*self.v.y 

Note: 2πf must be calculated and entered as a number.  

Fy: 5e-4*self.v.x 

The 5e-4 terms are the value of q*B. You will have to determine the correct numerical value of 

the term 2πf and enter that number in the equation for Fx. Use the properties window to set the 

mass of the object to 1 × 10-5 kg. Have the object start at rest at the origin.  

Create a kinetic energy meter (you need only measure the translational KE) to monitor the 

object’s KE and velocity meter. Run the simulation. You may have to zoom the screen out to get 

a better view of the object’s path. You will probably also need to decrease the time step of your 

simulation, if you haven’t already.  

• What is the shape of the path (circle, spiral, helix, parabola, etc.)?  

• How much kinetic energy does the object gain every time it crosses the gap? (Remember 

that the gain in kinetic energy equals the loss of the Potential energy when the force acting 

is conservative.) Use velocity value from the velocity meter to calculate final kinetic 

energy. Calculate potential energy eV. Calculate how many times it crosses the gap? 

• Try changing the value of 2πf and see how it affects the cyclotron performance.  
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• Now use the value 2 × 10-5 kg for the object’s mass and see if you can get the cyclotron to 

work properly. (Remember that you will have to adjust the value of 2πf). Let your 

instructor see this when it is working properly. 
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Lab 9: Magnetic Field Measurements 

 

Equipment: 

1. Permanent bar magnet 

2. Small compass 

3. Helmholtz coils 

4. Magnetic field sensor mounted on a rod clamped with table stand 

5. 2 × 4 wooden block 

6. Low voltage power supply 

7. DMM (Ammeter) 

8. Meter stick and small ruler 

9. Computer with logger pro 

 

I. Introduction  

In this exercise, you will examine the magnetic fields of two different magnets -- a permanent 

bar magnet and an electromagnet. The electromagnet is a Helmholtz Coil that consists of two 

identical circular coils of wire that are coaxial (have the same axis) and are separated by a 

distance equal to the coil radius.  

The source of any static magnetic field is electrical current. In the case of the permanent 

magnet the current is simply the electrons orbiting the nuclei of the atoms in the metal bar, as well 

as the intrinsic current within the electron, associated with its “spin”. The current in the 

electromagnet is conventional current -- i.e., free electrons drifting under the influence of an 

electric field in the wires that make up the electromagnet.  

 

a) Magnetic Field Maps  

Magnetic field maps consist of a series of magnetic field lines -- lines that are everywhere 

tangent to the magnetic field direction. The direction of the magnetic field at a point in space is 

most easily determined by using a small compass. A compass needle will always point in the 

direction of the magnetic field. (A note of caution: small compasses are easily reversed-

magnetized. Check often to make sure that your compass needle points north.)  

A magnetic field line can be mapped by placing a compass at a point in the magnetic field and 

then moving the compass in the direction the needle is pointing. The path followed by the 

compass will be a magnetic field line.  

 

b) Magnetic Field Magnitude  

Magnetic field magnitudes will be measured using a magnetic sensor whose operation is 

based on the Hall Effect. The sensor looks like a flat piece of plastic and is located in one end of a 
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transparent tube. The sensor measures the magnetic field component perpendicular to its plane. 

The positive direction for magnetic fields is shown in the following figure: 

 

The sensor can measure magnetic field magnitudes up to 6.00 mT (milli-Tesla), which is 600 G 

(gauss) or 1200 times the earth’s field. The sensor is interfaced with the computer program 

Vernier’s Logger Pro to take data and plot it on several different types of graphs.  

 

II. Procedure  

a) Magnetic Field Maps  

i) Bar Magnet  

Place the bar magnet on one edge of a piece of paper as shown below. (Note that you are 

drawing only half of the two-dimensional field map of the magnet. By symmetry we would 

assume the other half to be identical to the one you construct.) Draw an outline of the bar magnet 

and be sure to indicate which end is the North pole and which is the South pole. 

 

Use a compass (smaller one is better) to trace magnetic field lines as explained in section (1a). 

Place the compass near the North pole and move it in the direction the compass is pointing. Use a 

pencil to sketch the path followed by the compass. Two sample field lines are shown in the figure 

below. 
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Note that the field line labeled #2 in the figure is closed (i.e., it starts and ends at the same 

point). The dashed portion of this line actually passes through the metal of the bar magnet (you 

will not be able to sketch the dashed portion using a compass). All magnetic field lines are closed 

-- this is a general property of magnetic fields. Note also the arrows indicating the direction of the 

compass -- this is the magnetic field direction (from North to South, outside of the magnet).  

Field line #1 is also closed, but does not appear to be so because it goes off the edge of the 

paper.  

Draw at least six magnetic field lines on your map. Include arrows indicating the magnetic 

field direction.  

 

ii) Helmholtz Coil  

Connect the Helmholtz Coil, the DC power supply, and the DMM set to function as an 

ammeter (on the 10.0 A range) in series. Turn the power supply on and set it to deliver a current 

of 1.00 amps. Use the compass to construct a map of the magnetic field of the Helmholtz Coil in 

the horizontal plane that passes through the centers of the loops. Sketch at least seven field lines.  

A few sample field lines are shown in the figure below. Note the similarities and differences 

between this map and the map of the bar magnet. 

 

 

 

- 

- + + 

+ 

- 

Power Supply Ammeter 

Helmholtz coil 



PHYSICS 213  Lab 9 

Page 4 of 7 

 

b) Magnetic Field Magnitudes  

You will now measure the magnetic field magnitude of the Helmholtz Coil as a function of 

current and as a function of position on the X and Y axes. In each of the following parts, the 

magnetic sensor will be oriented with its plane perpendicular to the magnetic field direction. It 

will thus measure the magnitude of the magnetic field (rather than some component of the field).  

 

i) B vs. I  

Position the magnetic sensor so that it is on the X axis of the coils at a point midway between 

them (the origin of the X-Y coordinate system shown in the figure below). Orient the sensor so 

that its plane is perpendicular to the X axis. If the field measurements are negative, flip the sensor 

over. Since the magnetic field at the origin points in the X direction, the sensor will measure the 

field magnitude. Make the connections as shown in the figure.  

 

                           

(You are here) 

• Start the Logger Pro program.  

• In order to have the computer plot magnetic field magnitude versus current, you must set 

the program for “Events with entry”. To do this, go to the EXPERIMENT menu and select 

Data Collection.  

• When the New Window appears, click on the Mode and choose “Events with entry.” You 

will then be asked to define a new column for the variable you are going to enter, in this 

case, the current reading from the DMM. For the Full Name enter Current and for the 

Short Name enter I. For the units enter A. Click the OK box and a blank graph with 

magnetic field on the vertical axis and current on the horizontal axis will appear. Set the 

limits of the vertical axis scale from -2.5 mT to +2.5 mT. Set the horizontal axis scales 

from 0 to 1.50 A. Change point symbols use Graph options  Point symbols. 

Positive 

Positive 

Negative 

Negative 
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• Zero the magnetic field 

• Click COLLECT and press Keep (to keep the field measurement).  

• Enter current as zero and press ok 

• Next increase current to 0.25 amps in DMM by increasing voltage on the power supply 

• Click keep 

• Enter current as 0.25  and press ok 

• Next increase current to 0.5 amps in DMM by increasing voltage on the power supply 

• Click keep 

• Enter current 0.5 and press ok 

• Repeat steps and go in increments of 0.25 A until you reach 1.50 A. 

• You should now have a graph of B versus I.  

• Go to the second row of the Menu, and choose “Linear Fit.” Print out the graph-1 

(Landscape) with the curve fit information on it. [For this and all of the other graphs you 

will print out, include a title, axis labels and axis units.]  

 

ii) Bx vs. X  

                                 

 

 

• Go to the DATA menu and select “Clear all data”.  

Move sensor in this direction 

50 cm 

20 cm 

80 cm 
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• Go to Data collection. Create a new “Events with entry” experiment, only now define a 

column for X position (use units of cm). The horizontal axis scale for X should range from 

0 to 60 cm.  

• Set the current to 1.00 A. This is the current that you will use for all the measurements in 

this section.  

• With the magnetic sensor positioned at 0 cm shown in the Figure (Keep the long ruler in 

such a way that the central reading will be 30 cm). 

• Click COLLECT and press keep (to keep the field measurement).  

• Enter X as zero and press ok 

• Now move the sensor to X = 5 cm position 

• Click keep 

• Enter X as 5 and press ok 

• Next increase X to 10 cm 

• Click keep 

• Enter X as 10 and press ok 

• Repeat steps and go in increments of 5 cm until you reach 60 cms 

• You should now have a graph of Bx versus X position  

• Print out the graph-2 (Landscape) 

 

iii) Bx vs. Y  

 

 

 

Move sensor in this direction 
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• Go to the DATA menu and select “Clear all data”.  

• Go to Data collection. Create a new “Events with entry” experiment, only now define a 

column for Y position (use units of cm). The horizontal axis scale for Y should range from 

0 to 60 cm with 30 cm in the middle.  

• With the magnetic sensor positioned as in the previous section, set the current to 1.00 A. 

This is the current that you will use for all the measurements in this section.  

• Click COLLECT and press keep (to keep the field measurement).  

• Enter Y as zero and press ok 

• Now move the sensor to Y = 5 cm position 

• Click keep 

• Enter Y as 5 and press ok 

• Next increase Y to 10 cm 

• Click keep 

• Enter Y as 10 cm and press ok 

• Repeat steps and go in increments of 5 cm  until you reach 60 cms 

• You should now have a graph of Bx versus Y position  

• Print out graph-3 (Landscape) 
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Lab 10: Magnetic Induction 

Equipment: 

1. Permanent bar magnet 

2. Helmholtz coils 

3. 6” heavy solenoid 

4. Two 2 x 4 wooden blocks 

5. Low voltage power supply 

6. DMM (Voltmeter) 

7. Voltage probe 

8. Box filled with foam  

9. Aluminum and Steel rods 

10. Crocodile clips 

11. Computer with Logger pro 

 

I. Introduction  

If the magnetic flux through a circuit changes, for any reason, a voltage will be produced in 

the circuit. This is called magnetic induction. The circuit that we will use in this laboratory 

exercise is a solenoid and the external magnetic fields will be produced by a bar magnet and a 

Helmholtz Coil. The following equation gives the magnetic flux through a solenoid  

Mag. Flux = (N) (B) (A) (cosθ), 

where N is the number of turns in the solenoid, B is the strength of the magnetic field inside the 

solenoid, A is the cross sectional area of the solenoid, and θ is the angle between the B vector and 

the solenoid axis. In order for this expression to be correct, the magnetic field should be uniform 

in magnitude and direction throughout the solenoid. In reality, this will only approximately be 

true.  

The induced voltage will be measured by a voltage probe interfaced with the computer and the 

computer will display the voltage on a voltage versus time graph.  

 

II. Procedure  

All explanations should be written on the graph sheet. 

a) Bar Magnet  

• Open the Logger Pro program. Set the display for one graph and zoom the graph to fill the 

screen. The graph should have voltage on the vertical axis and time on the horizontal axis. 

Set the vertical axis scale minimum to -1 V and the maximum to +1 V. The time limits 

should range from 0 to 10 s. You should change the voltage and/or time scales at any 

point in this lab if it will help you see more clearly what is happening.  
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• Go to the Data Collection icon (the stopwatch) and set the data collection rate to be 50 

samples per second.  

• With the voltage probe not connected, zero the system. Then, connect the voltage probes 

to the solenoid terminals and begin to take recordings of the voltage difference between 

the two ends of the solenoid.  

• You are now ready to observe magnetic induction. Hold the bar magnet with its length 

parallel to and on the axis of the solenoid and close to but outside the solenoid. 

 

 

• Start the data collection and observe the voltage. As long as the magnet is not moved you 

should see no induced voltage. Now move the magnet into the solenoid -- do you see an 

induced voltage? Print the graph-1.  

• Remember that any induced voltage is caused by a change in the magnetic flux through 

the solenoid. What is causing the change in magnetic flux?  

• Move the magnet back out. How does the voltage induced while the magnet is moving out 

compare with the voltage induced when the magnet moved in? [Note: If the data 

collection stops at any time, simply restart it.]  

• You will now move the magnet into the solenoid much faster than before. Predict how the 

flux change (and thus the induced voltage) will compare to the one produced when 

moving the magnet slowly. In particular, how will the amplitude of the induced voltage 

compare with that of the voltage induced before? How will the time duration of the 

voltage (the width of the voltage peak) compare? Perform the motion and observe the 

results. Resolve any differences between prediction and the observation. Print the graph-

2. 

• You will now observe the voltage induced by a magnet falling through the solenoid. Set 

the vertical axis scales to a minimum of -5 V and a maximum of +5 V. The time limits 

should range from 0 to 2 s. You will now use a data collection feature known as 

triggering. When this feature is active, data collection will begin only when it is triggered 

by certain values of the voltage. Go to EXPERIMENT  DATA COLLECTION menu or 

Voltage Probe 
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CLOCK ICON and select TRIGGERING. Have the data collection trigger for ~0.01 V 

and increasing slope. This means you must drop the magnet through the solenoid so 

that the induced emf will be initially positive. Describe in your lab report what you 

had to do for that to happen. Set up your experiment so that Logger Pro will store 20 

samples of data prior to the trigger. This means that when the collection is triggered, 

Logger Pro will include the previous twenty data points in your table and on your plot, as 

well. Click OK. Once you have done this, hit the COLLECT button, and the program will 

wait for the “trigger” of seeing the voltage across the solenoid suddenly rising.  

• Place the box with padding in it on the table. Have a team member hold the solenoid 

above the box with its axis vertical. Hold the bar magnet above the solenoid with its length 

parallel to the solenoid axis. 

 

• Start the data collection and then, when you are ready to run your experiment, drop the 

magnet and allow it to fall completely through the solenoid. Have another team member 

make sure that the magnet doesn’t bounce out of the box and hit the floor or the table. 

(These magnets break easily.) 

• Observe the voltage versus time graph. Did the triggering work correctly?  

 Print out the graph-3.  

Can you explain the shape of the induced voltage (think about the change in magnetic flux)? 

You will now drop the magnet again from a greater height above the solenoid. Predict how the 

new graph will compare to the previous one. Perform the drop and observe the results. Resolve 

any differences between observation and prediction. How could this system be used to measure 

the velocity of a falling magnet?  

After removing triggering, change the vertical axis limits to -0.2 V and + 0.2 V and change 

the time limits to 0 10 s. With the solenoid back on the table and with its axis horizontal, hold 

the magnet with its length along the solenoid axis so that the magnet is about 10 cm from the 

solenoid. You are going to shake the magnet back and forth as shown in the figure below. Predict 

what the induced voltage will look like. Perform the motion, Print the graph-4 of induced 
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voltage, and give its peak amplitude. How far from the solenoid can you hold the shaking magnet 

and still see an induced voltage? 

 

b) Helmholtz Coil with DC Current  

Place the solenoid in the center of the Helmholtz Coil in such a way that its axis coincides 

with that of the Helmholtz Coil. Make sure also that the center of the solenoid coincides with the 

center of the Helmholtz Coil. The diagram shows the coil looking down from above it. 

 

Connect the Helmholtz Coil to the DC side of the power supply and set it to produce a current 

of 1.00 A. Set the vertical axis scale limits of the Voltage-Time graph to - 0.5 V and +0.5 V. Start 

the data collection. Don’t move anything -- simply observe the voltage. What do you think is 

causing this induced voltage? (This is often called “background” or “noise” voltage.)  

Observe the voltages induced by the following case and explain what is causing the magnetic 

flux to change. No graph printouts here. Only observation and comments. 

• Hold the steel rod inside the solenoid and parallel to and on the X axis. Observe the 

induced voltage for various motions of the rod. Does the voltage increase as the rod moves 

faster? Does the distance between the rod and the center of the solenoid have any effect on 

the voltage? Do the same thing with aluminum rod.  

 

c) Helmholtz Coil with AC Current  

Describe what you measure, and explain what you observe on the graph sheet. 
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• We have not encountered alternating voltages in this laboratory before today so we will 

take a few minutes to examine the basics. With the power supply turned off, connect the 

voltage probe directly to the AC output (the red jacks on the right hand side) of the power 

supply. Set the AC voltage to 2.0 volts. (When you check this with your DMM, make sure 

you are using the AC setting. The value given is the rms, or root mean square value of the 

voltage)  

• Go to EXPERIMENT  DATA COLLECTION menu and set the Data Collection Rate to 

3333 samples/sec (or whatever the maximum is for your probe sensor). You won’t be able 

to do so until you reduce the duration of your experiment to something manageable, such 

as the recommended 0 to 0.10 seconds. Set the data averaging (File->Settings for untitled) 

to 9 point averaging (smoothing and derivative). Set the vertical axis limits to - 5 V and + 

5 V and set the time axis limits to 0 and 0.10 s (1/10 s.). When you start the data 

collection, you will notice that nothing appears on the screen until after all of the data is 

collected. In other words, you will not see real time display of the data. You will see a 

delayed time data display, which is normal for older equipment. Turn on the power supply 

and start the data collection. You should see a sinusoidal graph similar to the one shown 

below. 

 

This is a typical alternating (often called AC) voltage. Two important parameters of an 

alternating voltage are shown in the figure -- the zero-to-peak amplitude (A) and the period (T). 

The frequency (f) of the voltage can be found using the following relationship:  

 

f = 1/T 

The units of T are seconds/cycle and the units of f are cycles/sec = Hertz = Hz.  

• Print the alternating voltage graph-5 and measure A and T. Calculate f (it should be 

very close to 60 Hz). Record all the information on the graph sheet. 
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• What happens to the amplitude, period, and frequency when the power supply setting is 

changed to 4.0 V?  

• Return the power supply setting to 2.0 V. Connect the solenoid to the voltage probe and 

place the solenoid at the center of the Helmholtz Coil (as you did in part (2)). Connect the 

Helmholtz Coil to the AC side of the power supply. Note that the induced voltage is 

caused by the time-varying B-field and not the movement of the coil.  

• Predict what the induced voltage versus time graph will look like. In particular, will the 

induced voltage also be alternating voltage? Will it have the same frequency as the power 

supply voltage? Start the data collection. Does observation agree with prediction? 

Measure and record the amplitude of the induced voltage. Print the graph-6 

• With the solenoid at the center of the Helmholtz Coil, observe the amplitude of the 

induced voltage when the solenoid axis is at a 45 degree angle to the Helmholtz Coil axis. 

Do your results agree with the fact that the flux through a solenoid contains the factor cos 

θ (where θ is the angle between the magnetic field direction and the solenoid axis)? Print 

the graph-7. 

• Also observe for a 90 degree angle. Print the graph-8. 

• Finally, return the solenoid to the center of the H. Coil with its axis parallel to the axis of 

the Helmholtz Coil. Place the steel rod inside the solenoid and observe the amplitude of 

the induced voltage. Print the graph-9.  

• Repeat using the aluminum bar. Print the graph-10.  
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Lab 11: Microwaves  

 

In this lab you will perform several experiments using microwave transmitters and detectors.  

The main purpose of this lab is to verify the electromagnetic wave nature of microwave 

radiation. We will use a two-slit diffraction experiment to get an estimate of the wavelength of 

the microwaves, and then observe the waves as they reflect off or are transmitted through various 

materials. You should be able to explain the various phenomena you observe in terms of the 

interaction of electromagnetic waves and electric charges.   

 

I. Apparatus 

The experimental apparatus is not identical, so please allow for some variations with the 

description of the apparatus given below. We have available Gunn diode or Klystron tube 

microwave transmitters and receivers that record the power of the detected radiation. The 

transmitters and receivers have metal horns which guide the waves so that in the intervening 

space they are roughly plane waves. The transmitters and receivers have slots underneath them 

so that they can be fitted on the rotating arms of the goniometer, which will be used to measure 

angles of incidence and reflection. 

 

II. Measurement of the wavelength 

In this part you are to use a two-slit diffraction grating to determine the wavelength of 

microwaves generated by your transmitter, and in so doing verify the wave nature of the 

radiation. The two slits serve as two sources of microwave radiation that are in phase, and 

separated by a distance, d, which is measured from slit center to slit center. By observing the 

locations of minima and maxima in the interference pattern produced from the radiation of these 

two sources, we can find the wavelength of the radiation using the following arguments. 

Consider the diagram drawn below. 

 

Fig. 1 
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Note that as long as the observation point is much farther away than the separation distance, 

d, we can approximate the difference in path length as sinr d θ∆ = .  From our study of 2-D 

waves in chapter 17, we showed that  

sinr d mθ λ∆ = = ,      (1) 

where m = 0,1,2,3, etc. identifying the interference maxima located at angle θ with respect to the 

central line shown in Fig. 1, and d is the distance between the centers of the two slits. The 

apparatus should be set up as in Fig. 2 below.  

 

 Fig. 2.  Set-up for double slit interference 

Adjust the plate, transmitter and receiver while they are directly facing each other to 

maximize the signal read out on the transmitter up to about 90.  Adjust the protractor so that the 

0° mark is pointing at the receiver, and the 180° mark at the transmitter.  This is the location of 

the central maximum.  Now, slowly and smoothly rotate the arm on which the receiver is resting 

to the right, all the while observing the power readout. Record the power reading as a function of 

θ for every 5° until you are past the second maximum. Find the maximum positions by fine tune. 

Then take more closely spaced readings near the first and second peaks. Determine your 

experimental value for the angle of the two maxima, as well as the estimated accuracy of your 

measurement. Rotate the arm the opposite direction and repeat the procedure. Average the two 

angles obtained for the m = 1 and m = 2 maxima and, using Eq. 1, calculate the wavelength of 

the microwave radiation.  

What is your estimated error for your experimental value of θ?  Which of the two angles do 

you think gives you the better estimate of λ?   

 

III. Reflection of microwaves by a flat conducting surface 

In this experiment you will verify the law of specular reflection for microwaves, i.e., 
i r

θ θ= . 

The reflecting surface we will use is a solid aluminum plate which can be fitted into the plate 

holder.  Set up your apparatus as in Fig. 3.   
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Fig. 3. Sample set up for specular reflection 

Orient the transmitter and reflecting plate for an angle of incidence of 45°. Find θr, the angle 

at which the maximum signal is received with respect to the normal. In addition, record the 

reflected power as a function of θr to 20° on either side of the observed maximum. Draw a graph 

showing power vs. θr. 

Does the law of specular reflection hold for microwave radiation? Explain why there is some 

radiation observed at angles near but not at θr. Hint: What if the radiation produced by the source 

is not exactly a plane wave?   

 

IV. Forward and backward scattering 

Keep your apparatus set up as in Fig. 3, with the angles of incidence and reflection both at 

45°.  Replace the solid aluminum plate with the polarizer plate (See appendix A.).  Orient the 

slits of the plate horizontally, next at 45°, and then with the slits vertical. Record the power 

reflected from the plate in each case. 

Next, orient your apparatus as in Figure 4. Using the same three orientations of the slits used 

in the reflection experiment in Section III, measure and record the transmitted power.   

 

 

Fig. 4 Transmission through a polarizing plate. 

θ
i
 

θ
r
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Both the Gunn diode and klystron tube transmitters produce microwaves that are polarized so 

that the E-field is aligned along the vertical direction. (In the Gunn diode, for example, the waves 

are produced by an alternating current in a vertically aligned diode acting as a dipole-like 

antenna.)  Are your observations what you expected?   

Explain why the horizontally aligned plate reflects no radiation but passes all of it, in terms 

of its effectiveness as a scatterer of vertically polarized EM waves.  From our discussion in class, 

use the model of a free electron in the vertically aligned metal bars to show why the backward 

scattered wave is large, while the forward scattered wave acts to cancel the transmitted wave.   

 

V. Microwave absorption 

In this experiment, you will determine the amount of microwave radiation absorbed by 

various materials by measuring the total amount of radiation reflected and transmitted by various 

substances and subtracting that from the total power transmitted by the source. Set up your 

apparatus as in Fig. 5.   

 

 Fig.5. Set up for microwave absorption experiment. 

Record the power transmitted through a solid metal plate, a half-reflector, a piece of 

plywood, the empty Lucite water box, with each of the objects oriented as in Fig. 5. Next, move 

the receiver to the 270° mark as in Fig. 4.  Record the power reflected from each material.  The 

power absorbed by each of the materials is the difference between the power received by the 

unobstructed receiver and the sum of the transmitted and reflected powers for each of the objects.  

Record these in a table.  Explain the differences, briefly. 

Now, fill the Lucite water box with water, and record the reflected and transmitted power.  

What is the power absorbed by the water?     

Explain the water absorption of microwaves in terms of the effect of the radiation on the 

water molecules. Where does the absorbed radiation energy go? Why are microwaves such 

efficient cookers of food? 
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Lab 12: AC Circuits 

 

 Equipment:  

1. 60-Hz AC power supply (function generator) 

2. Two dmms 

3. Two Vernier voltage probes 

4. One Vernier current probe  

5. One LCR meter 

6. One Pasco RLC circuit board.  

7. Crocodile clips   

8. Short and long wires 

Discussion: RLC circuits with an AC power supply 

The RLC series circuit combines in series all three circuit elements discussed in class thus far. 

 

 

DC Circuits:  

There are two scenarios we consider in detail in class. The first is illustrated in Figure 1. A 

capacitor C has been charged to some initial potential V0, and then the switch S is closed so that 

the capacitor discharges through the resistor, R, and inductor, L. The behavior of the current in 
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the circuit and charge on the capacitor depends on the resistance in the circuit. If the resistance is 

relatively small, then the circuit behaves to first order like an LC circuit in which the current (and 

the charge on the capacitor) oscillates sinusoidally in magnitude and polarity with frequency  

0

1

LC
ω =  

The presence of the resistance in the circuit results in an exponential decay of the current 

amplitude (and charge) with time, as energy is dissipated through the resistor while the current 

oscillates sinusoidally. It also causes the frequency of the oscillations to be reduced slightly, so 

that 

2

2

1

4
d

R

LC L
ω = −  

This type of system is called an under-damped oscillator. A larger resistance means that the rate 

of decay of the current amplitude increases until all of the energy stored in the capacitor is 

dissipated in the resistor in the course of one oscillation. This is called a critically-damped RLC 

circuit. Still larger resistance leads to behavior that is called over-damped.  

 

AC circuits:  

In the second scenario, shown in Figure 2, the circuit is being driven by a sinusoidally-varying 

power supply with frequency �=2��, such that 

max( ) sin( )t tε ε ω φ= +  

The factor ϕ is the phase of the voltage coming from the power supply. Phase is important when 

you have two oscillations or waves with different phases. For this series circuit, the second 

oscillating quantity is the current, 

max( ) sin( )i t i tω=  

In general, while the current and voltage in RLC circuits have the same frequency, the voltage 

across the power supply is OUT OF PHASE with the current flowing through the circuit. The 

graph below illustrates this situation. 
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Power:  

The power delivered to the circuit by the power supply at any instant is just  

    ����	(	)=
(	)�(	).  

The graph below illustrates this product for two sinusoidally varying quantities. 

 

Notice that the power delivered has a maximum that is lower than you would expect just by 

multiplying the amplitudes of the two functions. However, if we average the power over the 

period of the oscillation, 
2

T
π

ω
= , 

max max max max

0

1 1
sin( ) sin( ) cos

2

T

avg
P t i t dt i

T
ε ω φ ω ε φ= + =  

we see that the average power is related to the expected maximum power, except for a factor of 

½, and the cosine of ϕ, the phase angle.  

 

RMS quantities:  

The factor of ½ results from the fact that the current and voltage are always oscillating about 

zero (0). This factor is taken into account by using the “rms” or “root mean square” values of the 

voltage and current, 

2 max
max

0

1
( sin( )

2

T

rms
V t dt

T

ε
ε ω φ= + = , 

 

2 max
max

0

1
( sin( )

2

T

rms

i
i i t dt

T
ω φ= + = . 

When you use a DMM to measure the voltage or current in some part of an oscillating circuit on 

its AC setting, it will display the rms value. Expressed in terms of the rms values, the average 

power is then  
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���=��������cosϕ. 

 

Reactance:  

The factor of cos� tells us that the power delivered is a maximum when the phase angle ϕ=0, 

while the average power goes to zero when the phase angle is ϕ=�/2! Obviously, the phase angle 

between current and voltage plays a huge role in determining whether any electrical power is 

delivered by the circuit. Therefore, we need to understand: what determines the phase difference 

between the current and voltage? The fundamental reason for this phase difference in an RLC 

circuit is the way voltage drops are established across each of the three components.  

As in DC circuits, the instantaneous voltage drop across the resistor is just  

max( ) ( ) sin( )
R

V t i t R i R tω= = . 

The voltage amplitude across the resistance is therefore 

maxR
V i R= . 

For the inductor and capacitor, however, the voltage across them is only indirectly related to 

the current in the circuit.  

The voltage drop across the inductor is proportional to the rate of change in the current, and 

reacts to oppose all changes in current. As a result, the voltage across the inductor leads the 

current in the circuit by a phase of π/2: 

max( ) ( ) sin
2

L

di
V t L t i L t

dt

π
ω ω

 
= = + 

 
. 

The voltage amplitude across the inductance is proportional to the maximum current, just like the 

voltage across the resistance. The constant of proportionality has units of ohms (Ω), but is called 

the “inductive reactance”:  

L
Lχ ω=  

The voltage amplitude across the inductor is therefore  

max maxL L
V i L iω χ= =  

The voltage drop across the capacitance is proportional instead to the build-up of charge 

across it as a cumulative result of the current flow, and reacts to oppose that build up. As a result, 

the voltage across the capacitor lags the current in the circuit by a phase of π/2:  

max( )
( ) sin

2
C

iq t
V t t

C C

π
ω

ω

 
= = − 

 
. 

The voltage amplitude across the capacitance is also proportional to the maximum current. The 

constant of proportionality here is called the “capacitive reactance”: 
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1
C

C
χ

ω
= . 

The voltage amplitude across the capacitance is then:  

m ax
m axC C

i
V i

C
χ

ω
= = . 

Reactance has the same unit as resistance, ohms, and determines the relationship between current 

and voltage, just like resistance. However, unlike resistance, reactance does not dissipate 

electrical energy. It stores that energy in the magnetic field of the inductor and/or the electric field 

of the capacitor, and then reintroduces that energy back into the circuit. This process of energy 

extraction and then re-insertion occurs at the same frequency as that of the current, but is 90° out 

of phase with the current. Also, unlike resistance, reactance depends on the frequency, ω, of the 

current oscillation.  

 

Phase Angle:  

The AC voltage across the RLC circuit is the sum of the instantaneous voltages across the 

three components. This sum involves three sine functions with different phases. One way to 

handle this sum is to think of each voltage as the vertical component of a vector-like quantity 

called a phasor, each of which has a magnitude equal to the voltage amplitudes (VR, VL, VC) , and 

an angle in phasor space (ωt, ωt+π/2, ωt-π/2). The voltage across the entire circuit, ε(t), would 

then be the vertical component of the “vector sum” of the three individual phasors. The (constant) 

phase difference between ε(t) and i(t) would be the (constant) angle in phasor space between the ε 

phasor and the VR phasor. 

 

 

The net result is the following expression for the phase difference,  
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1 1

1

tan tanL C

L
C

R R

ω
χ χ ωφ − −

 
− − 

= =   
   

 

 

This is the phase angle by which the power supply voltage leads the current. 

 

Impedance-Z:  

Using the result from the phasor analysis outlined above, the rms (or max) voltage across the 

entire circuit, Vrms, can be obtained by combining the voltage amplitudes for each circuit 

element using Pythagoras’ theorem:  

 

2 2 2( ) ( )rms rms rms L C rmsV I R I I Zχ χ= + − =  

 

2 2
( ) ( )rms

L C

rms

V
Z R

I
χ χ= = + −  

The quantity Z is called the “impedance.” The impedance represents the effective “resistance” of 

a circuit to an AC voltage. Like reactance, impedance depends on the angular frequency, ω, with 

which the circuit is being driven.  

 

Resonance:  

As can be seen from both the expressions for the phase angle φ and the impedance Z, the 

difference between the inductive and capacitive reactance,
L C

χ χ− , is an important quantity. The 

sign of this difference determines whether the voltage leads or trails the current in phase. The 

minimum value of impedance is obtained when this difference is zero. In fact, when 
L C

χ χ− =0, 

the impedance simplifies to 

���������� = �. 

A minimum value of the impedance Z means the largest possible ���� for a given ���� from the 

power supply. In addition, 
L C

χ χ− =0 means that the phase angle φ = 0. Therefore, the 

contributions to the voltage from the capacitor and inductor exactly balance. This condition is 

called resonance. Recall from our discussion of the power that cos�=1 corresponds to the 

maximum power delivered from the power supply, 

���,res������ = ��������. 
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For a given capacitance, C, and inductance, L, all this occurs for the special value of driving 

frequency,  

0

1

LC
ω =  

This is the frequency of oscillation for a pure LC circuit. 

 

Experiment I: RMS Measurements:  

In this first experiment, you will work with the Pasco circuit board, the AC power supply 

(function generator), voltmeter and ammeter. The Pasco circuit board shows you the connections 

which are hardwired underneath. We will use the 10 Ω resistor, the 8.2 mH inductor, and the 100 

μF capacitor. If you hook up your power supply (~1000 Hz) starting at the capacitor and ending at 

the resistor, you will have an RLC series circuit. Although the values marked on the board are 

pretty accurate to 2 significant figures, there is a significant omission in that they don’t tell you 

the resistance across the inductor. This value is Rinductor = 5.3 Ω, and is large enough to make an 

impact on your measured values.  

 

The DMM’s should be set to measure AC values. Remember that this means it will report rms 

(root mean square) values. You should hook up the DMM to measure current as it comes out of 

the power supply, starting from the low impedance output plug. Set your scale to 200 mA. The 

DMM for measuring voltage should be connected so as to measure the voltage from one end of 

the RLC circuit board to the other. Set that scale to 20 V. With the function generator off, connect 

the wire coming from the DMM measuring current to the plug underneath the 100 μF capacitor. 

Connect the ground plug from the function generator directly to the plug underneath the 10 Ω 

resistor.  

 

(a) Determine the impedance, Z:  

• Before turning on the power supply, make sure that the voltage is set to 0. Then turn on 

the power supply and increase the amplitude of your signal from the function generator 

A 
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until Vrms is 2.00 V (or Vp=2.83V). Record your Irms current reading. Then calculate the 

total impedance,   

rms

rms

V
Z

I
= , of your circuit.  

• Now, determine the predicted values of Z and ���� using the formulas given above with 

the component values of R, L and C, and compare with your measured values. Remember 

to include the additional resistance present in the inductor! Since the components are in 

series, the resistance of the inductor is simply added to the resistance of the 10 Ω resistor. 

Also, remember that the signal frequency, f, shown on the function generator is in hertz 

(Hz), while �=2�� is in radians per second. Do your values agree? At this point, check 

with your instructor.  

(b) Find the voltages across the individual components:  

• Now, check whether your measured values of Vrms across the three components match 

the predicted values. Using your DMM that was measuring the voltage across the entire 

circuit, measure the voltage across each of the circuit components, and compare with the 

expected rms voltages using the formulas given in the discussion section. They should all 

agree quite well, except in the case of the inductor. In general, you should see the voltage 

drop across the inductor to be greater than what is predicted from the inductance alone. 

Now, you might think to add the expected voltage drop across the resistance in the 

inductor to the voltage drop across the inductance. Does that agree with your measured 

value? Discuss why or why not. At this point, check again with your instructor.  

 

Experiment II: Computer measurements  

It is quite difficult to isolate the inductance in our RLC series circuit from the resistive portion 

of the circuit. On the other hand, the resistor and the capacitor do behave as single components in 

the circuit. You will take advantage of this fact in carrying out the next set of experiments.  

Remove both the DMMs from your circuit. Keep the power supply setting at 2.0 V rms. 

Warning: IMPORTANT!! In all previous DC circuits, we paid little attention to which 

connection went to ground. But when it comes to AC circuits, it is very important to know which 

connection goes to “true” ground. Therefore, you MUST connect all grounded wires at only one 

point in the circuit! If you connect two points in the circuit to ground you will bypass all or part 

of your circuit, changing the behavior of the circuit dramatically. This is a crucial point. Failure 

to identify where your ground is will be the most likely cause for error and confusion as you carry 

out your measurements. 

We will use the two Vernier voltage probes as well as the current probe in our measurements. 

The current probe isn’t grounded, but the voltage probes are. The power supply may be grounded 

as well. Plug in your probes. Set your Logger Pro data settings to collect data over a 0.1 second 

interval and up to 30 secs, and then to collect the maximum number of data points possible in that 
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interval. Introduce your current probe in series with the rest of the circuit. Place one voltage probe 

in parallel to the entire circuit. Have your instructor check your circuit before proceeding.  

 

Voltage and current vs. time on the computer  

Now, you are ready to begin using Logger Pro to see the behavior of your AC circuit. Hit 

Collect so that the readings of your voltage and current probes are displayed. You should be able 

to see the oscillating voltage signal across your series circuit. Record your maximum voltage for 

the circuit as displayed on the screen, and verify that it has the correct relationship with the value 

of Vrms previously measured on your DMM. Also, measure the time for one full oscillation of 

your signal. Multiply this time value with a calibration constant 0.0709 × 10-3 and make sure 

that time matches with the period (T = 1/f) of the signal coming from your function generator.  

Is the source voltage signal from the power supply leading, lagging or in phase with the 

current? 

Take a print of the graph. (PRINT-LANDSCAPE) 

 

Phase Angle - In order to measure the phase angle between the current and the power supply 

voltage, you need to measure the difference in time, Δt, between the curves (power supply voltage 

peak and current peak) and then compare that time to the period, T, of one oscillation. One 

oscillation is equivalent to 2π radians or 360°. Therefore, the phase shift in degrees can be found 

from      

360
t

T
φ

∆
= ° ⋅ . 

The sign of the phase angle is determined by whether the voltage is leading (+) or lagging (-) 

the current (voltage through the resistor). Now, compare your measured value of the phase angle 

with the calculated value from the formula for ϕ (page 6) given in the introduction. Don’t forget 

to include the additional resistance you found in the inductor! Add it to the10 Ω resistance. 

Place the other voltage probe across the 10 Ω resistor only. Next, look at the voltage across 

the 10 Ω resistor on your board. Record the maximum voltage across the resistor and compare 

that value with the rms voltage you measured earlier using the DMM. Hit Collect so that the 

readings of your voltage and current probes are displayed. 

Is the voltage across the resistor leading, lagging or in phase with the current?  

Take a print of the graph. (print-landscape) 




