IS341

Chap.9, p.11

IS 341

Business Systems Analysis

Chapter 9 - Notes
Designing Databases

Introduction – Why use Databases? – Three reasons/benefits/goals of databases:

1. Control Redundancy - Redundancy is having the same information stored in more than one location; we allow and sometimes increase redundancy as a means for more efficiency in Relational Databases, but we want to Control Redundancy, not eliminate it

2. Eliminate Inconsistency – Inconsistency is having the same information stored in more than one location, and the values of that information are different (one place says the LastName is “Jones”, another says “Smith”); we want to eliminate these inconsistencies so that the LastName is always the same no matter where it is found/stored (Smith or Jones, whichever is correct)

3. Promote Program/Data Independence by Uncoupling the data from the Programs – in earlier days of programming, the Processes/Programs were considered more important than the data and the two were coupled such that changes to a program many times required changes to data structures that also affected other programs which then had to be modified (etc.). Today the Data is considered of primary importance and should be structured apart from the processes so that all the programs go to the same database and use the same structures of the same data. This separation of programs and data is termed Uncoupling, and allows the data and the programs to exist independently.

I. Database Design – text says two steps (three steps in reality):

1. Develop (i.e., Choose) a Logical Database Model which describes the data (most popular today is Relational model);

2. Choose a DBMS that uses that model;

3. Choose the technology (physical model) to support that DBMS.

***NOTE: Logical organizational needs and requirements should drive the choice of DB model, and that choice should then drive technical considerations, NOT the other way around. In reality (too many times!), the physical choices (or constraints) drive the logical considerations. This is a serious mistake! But it happens all the time (just as in politics….).

Logical database design is driven by previously developed ERDs and by report and form layouts

A. The Process of Database Design – four key steps in LOGICAL database modeling and design:

1. Four key steps in LOGICAL database modeling and design:

a. Develop a logical data model for each user interface using Normalization;

b. Combine normalized data requirements into one logical database model (View Integration);

c. Translate ERD (conceptual data models) developed without consideration of specific user interfaces into normalized data requirements;

d. Compare the consolidated logical database design with the translated ERD model and produce one final logical database model through View Integration.

2. PHYSICAL database design – use the results of the four steps above; also must consider definitions of each attribute, descriptions of when/where of data entry/retrieval/update/deletion, expected response time, data integrity, and both file and database technologies to be used. All this allows choices for physical database design, including:

a. Choosing storage format (data type) for each attribute – format is chosen to minimize storage space and maximize data quality. Data type involves record length, coding scheme, decimal places, minimum/maximum values, and other attributes;

b. Grouping attributes from the logical database model into physical records;

c. Arrange related records in secondary memory to facilitate efficient/rapid storage/retrieval/update (called File Organizations);

d. Select media and structures to make data storage more efficient (key indexes, etc.)

B. Deliverables and Outcomes – the set of Relations (Tables with ALL the attributes from the ERDs) that make up the database
II. Relational Database Model – represents data as a set of Named, two-dimensional tables (Relations), consisting of Named Columns (Attributes) and Un-Named Rows (Entity Instances, represented by the specific data values for the attributes)

Shorthand Notation: TableName(AttributeName1, AttributeName2,….) with the primary key underlined.

Student(Student_ID_Nbr, Student_Name, Student_Address)

***The order of the Rows and the Order of the Columns as Immaterial (does not matter)

*****Well-Structured Relations – what constitutes a well-structured relation? Minimal redundancy and the ability to insert, modify, or delete rows in the table without errors or inconsistencies
Anomaly – an error in an RDB; most errors in an RDB can be solved by Building A New Table.
III. Normalization –
1. the process of converting complex data structures into simple, stable data structures;
2. the process of organizing data attributes into stable, flexible, and adaptive entities (relations)

A. Rules of Normalization

1. Non-(Un-)Normalized – tables with repeating data groups; tables with multi-valued data attributes

2. First Normal Form (1NF) – no repeating data groups; no multi-valued data attributes

3. Second Normal Form (2NF) –
a. must be in 1NF;
b. no partial dependencies; all non-key attributes must depend on the full key, not part of the key

4. Third Normal Form (3NF) –
a. must be in 2NF;
b. no transitive dependencies; all non-key attributes must depend on the entire key, not other non-key attributes;
c. no derived attributes (attribute values that can be calculated or inferred from other attribute values)

B. Functional Dependence and Primary Keys -
Functional Dependency is a relationship between two attributes such that for a given relation, attribute B is functionally dependent on attribute A if, for every valid value of A, that value of A uniquely determines the value of B; represented by: A(B

An attribute may be dependent on two (or more) attributes:

e.g., (StudentID, CourseNbr, Grade)
***The instances in a relation do NOT prove a functional dependency exists; only a thorough working knowledge of the problem domain, obtained through requirements analysis, is a reliable method for identifying functional dependencies, i.e., KNOW YOUR DATA AND YOUR BUSINESS RULES!

C. Second Normal Form (2NF) – see above

D. Third Normal Form (3NF) – see above
Referential Integrity – An integrity constraint specifying that the value (or existence) of an attribute in one relation (i.e., a Foreign Key) depends on the value (or existence) of the same attribute in another relation (as the Primary Key).
IV. Transforming E-R Diagrams into Relations – 4 steps: (see also A, B, & C below)

1. Represent Entities – each entity type (class) in the ERD becomes a relation with the identifier as the primary key

2. Represent relationships – each relationship in the ERD must be represented in the relational database design; how this is represented depends on the relationship’s nature. A relationship may be expressed through a foreign key, or through a separate table (concatenated key)

3. Normalize the relations – there may be unnecessary redundancy or other anomalies and we want well-structured relations.

4. Merge the relations – there may be redundant relations (two or more relations that describe the same entity type/class) that must be merged toremove redundancy

A. Represent Entities – the primary key should satisfy two properties:

1. The value of the key must uniquely identity every row in the relation

2. The key should be non-redundant; no attribute in the key can be deleted without destroying its unique identification

B. Represent Relationships

1. Binary 1:N and 1:1 Relationships

a. 1:N – place the primary key on the “1” side of the relationships as a Foreign Key on the “N” side of the relationship.

Customer(CustID, CustName, CustAddr)—Places—Order(OrderNbr, OrderDate, CustID)

b. 1:1 – Add the primary key of A as a foreign key of B, or primary key of B as foreign key of A, or both

2. Binary and Higher Degree M:N Relationships – create a new relation with a concatenated key made of both primary keys – Grade(StudentID, CourseNbr, Grade)

3. Unary Relationships – for a recursive relationship like Employee manages Employee, use the primary key from one entity instance as a foreign key in the other entity instance - Employee(EmpNbr, EmpName, EmpAddr, ManagerID)

C. Summary of Transforming E-R Diagrams into Relations

V. Merging Relationships – if two relations both use the same primary key, then both relations are actually the same relation and should be merged

A. An Example of Merging Relationships

Employee(EmpNbr, EmpName, EmpAddr) and Worker(EmpNbr, JobClass, PayScale) both have EmpNbr as a primary key and should be merged into: Employee(EmpNbr, EmpName, EmpAddr, JobClass, PayScale)

B. View Integration Problems – problems that may arise
Synonyms – two different names used for the same attribute
Homonyms – a single attribute name that refers to more than one characteristic – “Account” may mean both Checking Account and Savings Account

Dependencies between non-keys – merging two relations can cause 3NF anomalies; if Student1(StudentID, Major) is merged with Student2(StudentID, Advisor), but each Major has only one Advisor, then Student(StudentID, Major, Advisor) is a Transitive Dependency because Advisor is dependent on Major

VI. Logical database Design for Hoosier Burger

VII. Physical File and Database Design

Schema – the Physical view of a database (the Computer’s view

Sub-Schema – the Logical view of a database (the User’s view)
VIII. Designing Fields

Field – the smallest unit of named application data recognized by system software

A. Choosing Data Types -
Data Type – a coding scheme recognized by system software for representing organizational data; 4 objectives in choosing a data type:

a. Minimize storage space

b. Represent all possible values of the field

c. Improve data integrity for the field

d. Support all data manipulations desired on the field

1. Calculated Fields (Derived Attributes) – a field that can be calculated or inferred from other database fields

2. Coding and Compression Techniques – some attributes have few values and other have a large range of possible values; a data type should be chosen to represent all the possible values (Domain) but also keep storage space to a minimum (compression techniques)

B. Controlling Data Integrity – creating data types helps control data integrity by limiting possible values for a field; five (5) popular control methods:

1. Default Value – such as an Area Code on phone numbers

2. Input Mask/Template – restricts widths and possible values for a field

3. Range Control – a limited set of alphabetic or numeric values – a month might ONLY be 3 valid characters: Jan, Feb, Mar, etc., or a department might only allow certain combinations: ACCT, MIS, SALES, etc.

4. Referential Integrity – cross referencing between relations; if EmpNbr 222 is not a valid number in the Employee table, 222 cannot be used as a foreign key where EmpNbr is a foreign key

5. Null Value Control – Null is a non-0, non-blank character meaning NOTHING, an EMPTY field; nulls may or may not be allowed at certain points in data entry
IX. Designing Physical Tables – physical tables have to do with how data will physically be stored on secondary media (concern is with efficient storage and processing speed), NOT with the logical relations of normalized tables
Denormalization – splitting normalized relations into physical tables based on usage of rows and fields (storing pages efficiently); this can Increase the chance of errors and inconsistencies

A. Arranging Table Rows – a computer system stores data in a Physical File; the WAY the operating system arranges the table rows in the file is called File Organization; file organization should provide (some of these may conflict with each other):

a. Fast Data Retrieval

b. High throughput for processing transactions

c. Efficient use of storage space

d. Protection from failures or data loss

e. Minimal need for reorganization

f. Accommodation of growth

g. Security from unauthorized use

Pointer – a data field that can be used to locate a related field or row of data

1. Sequential File Organizations – rows in the file are stored in sequence according to a primary key value (NOT always true! May be in order of transaction, etc.)

2. Indexed File Organizations – rows may actually be stored in any sequence, but may be accessed by means of an Index structure that records their physical location on the media

3. Hashed File Organizations – Address of each row is calculated by an algorithm

4. Summary of File Organizations

B. Designing Controls for Files

X. Physical Database Design for Hoosier Burger

XI. Electronic Commerce Application: Designing Databases

Designing Databases for Pine Valley Furniture’s WebStore

