THE ESSENTIAL TRIGONOMETRY REFERENCE SHEET

Look for these other great reference sheets, coming soon:

Essential Geometry Reference Sheet Essential Sequences \& Series Reference Sheet Rectangular Functions Reference Sheet Polar Functions Reference Sheet Essential Derivatives \& Integrals Reference Sheet

LICENSE: ©2002 Platonic Realms ${ }^{\text {TM }} /$ Math Academy Online ${ }^{\text {TM }}$. This electronic document is licensed to the individual who downloaded it from the Platonic Realms/Math Academy Online web site, and may be copied and/or printed for that person's sole use.

THIS DOWNLOAD IS FOR YOUR PERSONAL USE

It may not be copied for or conveyed, sold, or lent to any other person. In other words, if you downloaded this document, thank you, and please invite other interested persons to download their own copy from the Platonic Realms site, at http://www.mathacademy.com.

Essential Trigonometry Reference Sheet

TRIGONOMETRY evolved from the study of triangles, and has to do with both angle measurement and with certain natural functions defined on angles.
ANGLES Given two line segments with a common endpoint, the angle between them is defined to be the amount by which one segment must be rotated about the common endpoint to make it coincide with the other line segment. The angle is positive if the turning is counterclockwise, and negative if clockwise. If the common endpoint is the center of a circle, a right angle subtends $1 / 4$ of the circle, and a straight angle subtends $1 / 2$ of the circle. In classical degree measure, a straight angle contains 180°. In modern radian measure, a straight angle contains π radians. Equivalently, an angle of 1 radian subtends an arc of the circle of arclength equal to the circle's radius.

RADIANS/DEGREES CONVERSION Use the formula at right, plugging in the known quantity and solving for the unknown quantity.

REFERENCE ANGLES It is often convenient to consider the reference angle of an angle; this is defined as the smallest angle to the terminating side from the horizontal (and may therefore be negative).

TRIG FUNCTIONS
Referring to the figure, the six trigonometric functions are defined as indicated.

$\sin \phi=\frac{y}{r}=\frac{\text { opposite }}{\text { hypotenuse }}$ $\cos \phi=\frac{x}{r}=\frac{\text { adjacent }}{\text { hypotenuse }}$ $\sec \phi=\frac{r}{x}=\frac{\text { hypotenuse }}{\text { adjacent }}$ $\csc \phi=\frac{r}{y}=\frac{\text { hypotenuse }}{\text { opposite }}$ $\tan \phi=\frac{y}{x}=\frac{\text { opposite }}{\text { adjacent }}$ $\cot \phi=\frac{x}{y}=\frac{\text { adjacent }}{\text { opposite }}$

TRIG FUNCTION INVERSES Denoted

 either as arcsin or $\sin ^{-1}$, etc., these satisfy$\sin \phi=x \quad \leftrightarrow \quad \phi=\sin ^{-1} x$
$\cos \phi=x \leftrightarrow \phi=\cos ^{-1} x$
$\tan \phi=x \quad \leftrightarrow \quad \phi=\tan ^{-1} x$
on their respective common domains, and similarly for arccsc, arcsec, and arccot.

LAW OF SINES
$\sin (0)=\cos (\pi / 2)=0$
$\sin (\pi / 2)=\cos (0)=1$
$\sin (3 \pi / 2)=\cos (\pi)=-1$
$\sin (\pi / 6)=\cos (\pi / 3)=\frac{1}{2}$
$\sin (\pi / 3)=\cos (\pi / 6)=\frac{\sqrt{3}}{2}$
$\sin (\pi / 4)=\cos (\pi / 4)=\frac{\sqrt{2}}{2}$
$\tan (\pi / 4)=\cot (\pi / 4)=1$

$\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}$
LAW OF COSINES
$c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$

IDENTITIES \& EQUIVALENCES

REDUCTION FORMULAS

$\sin (\pi / 2-\phi)=\cos \phi$	$\sin (\pi / 2+\phi)=\cos \phi$
$\cos (\pi / 2-\phi)=\sin \phi$	$\cos (\pi / 2+\phi)=-\sin \phi$
$\tan (\pi / 2-\phi)=\cot \phi$	$\tan (\pi / 2+\phi)=-\cot \phi$
$\sin (\pi-\phi)=\sin \phi$	$\sin (\pi+\phi)=-\sin \phi$
$\cos (\pi-\phi)=-\cos \phi$	$\cos (\pi+\phi)=-\cos \phi$
$\tan (\pi-\phi)=-\tan \phi$	$\tan (\pi+\phi)=\tan \phi$
FUNDAMENTAL EQUIVALENCES	PYTHAGOREAN IDENTITIES
$\csc \phi=1 / \sin \phi$	$\sin ^{2} \phi+\cos ^{2} \phi=1$
$\sec \phi=1 / \cos \phi$	$1+\tan ^{2} \phi=\sec ^{2} \phi$
$\tan \phi=\sin \phi / \cos \phi$	$1+\cot ^{2} \phi=\csc ^{2} \phi$
$\cot \phi=\cos \phi / \sin \phi$	HALFANGLE
$\cot \phi=1 / \tan \phi$	FORMULAS
DOUBLEANGLE FORMULAS	$\sin ^{2} \phi=\frac{1-\cos 2 \phi}{2}$
$\sin 2 \phi=2 \sin \phi \cos \phi$	$\cos ^{2} \phi=\frac{1+\cos 2 \phi}{2}$
$\cos 2 \phi=\cos ^{2} \phi-\sin ^{2} \phi$	$\tan ^{2} \phi=\frac{1-\cos 2 \phi}{1+\cos 2 \phi}$
$=1-2$	$\sin ^{2} 2 \phi$
$=2 \cos ^{2}-1 \phi$	$\overline{(1+\cos 2 \phi)^{2}}$
$2 \tan \phi$	$\underline{(1-\cos 2 \phi)^{2}}$
$\tan 2 \phi=\frac{2 \tan ^{2} \phi}{1+\tan ^{2}}$	$=\sin ^{2} 2 \phi$

ANGLE SUM \& DIFFERENCE

$$
\sin (\phi+\psi)=\sin \phi \cos \psi+\cos \phi \sin \psi
$$

$$
\cos (\phi+\psi)=\cos \phi \cos \psi-\sin \phi \sin \psi
$$

$$
\tan (\phi+\psi)=\frac{\tan \phi+\tan \psi}{1-\tan \phi \tan \psi}
$$

$$
\cos (\phi-\psi)=\cos \phi \cos \psi+\sin \phi \sin \psi
$$

$$
\tan (\phi-\psi)=\frac{\tan \phi-\tan \psi}{1+\tan \phi \tan \psi}
$$

FUNCTION PRODUCT, SUM, \& DIFFERENCE
$\sin \phi \cos \psi=\frac{1}{2}[\sin (\phi+\psi)+\sin (\phi-\psi)]$

$$
\cos \phi \sin \psi=\frac{\overline{1}_{1}}{2}[\sin (\phi+\psi)-\sin (\phi-\psi)]
$$

$$
\cos \phi \cos \psi=\frac{1}{2}[\cos (\phi+\psi)+\cos (\phi-\psi)]
$$

$$
\sin \phi \sin \psi=-\frac{1}{2}[\cos (\phi+\psi)-\cos (\phi-\psi)]
$$

$$
\left.\sin \phi+\sin \psi=2 \sin \frac{1}{2}(\phi+\psi) \cos \frac{1}{2}(\phi-\psi)\right]
$$

$$
\left.\sin \phi-\sin \psi=2 \cos \frac{1}{2}(\phi+\psi) \sin \frac{1}{2}(\phi-\psi)\right]
$$

$$
\left.\cos \phi+\cos \psi=2 \cos \frac{1}{2}(\phi+\psi) \cos \frac{1}{2}(\phi-\psi)\right]
$$

$$
\left.\cos \phi-\cos \psi=-2 \sin \frac{1}{2}(\phi+\psi) \sin \frac{1}{2}(\phi-\psi)\right]
$$

