Multiplying a Number Times a Fraction and Multiplying a Fraction Times a Number

1. Show $6 \times \frac{2}{3}$ on a number line.

2. Show $\frac{2}{3} \times 6$ on a number line.

3. Show $\frac{2}{3} \times 12$ on a number line.

1. Show $6 \times \frac{2}{3}$ on a number line.

$$6 \times \frac{2}{3} = 4$$

another

2. Show $\frac{2}{3} \times 6$ on a number line. $\frac{1}{3}$ of 6 is 2. Take 2 of them $\frac{2}{3} \times 6 = 4$

- 4.NF.4b. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.
- b. Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times (2/5)$ as $6 \times (1/5)$, recognizing this product as 6/5. (In general, $n \times (a/b) = (n \times a)/b$.)
- 5.NF.4a. Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
- a. Interpret the product $(a/b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $(2/3) \times 4 = 8/3$, and create a story context for this equation. Do the same with $(2/3) \times (4/5) = 8/15$. (In general, $(a/b) \times (c/d) = ac/bd$.)