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ABSTRACT 

This tutorial provides an overview of the data mining process.  The tutorial also provides 
a basic understanding of how to plan, evaluate and successfully refine a data mining project, 
particularly in terms of model building and model evaluation. Methodological considerations are 
discussed and illustrated. After explaining the nature of data mining and its importance in 
business, the tutorial describes the underlying machine learning and statistical techniques 
involved.  It describes the CRISP-DM standard now being used in industry as the standard for a 
technology-neutral data mining process model. The paper concludes with a major illustration of 
the data mining process methodology and the unsolved problems that offer opportunities for 
research.   The approach is both practical and conceptually sound in order to be useful to both 
academics and practitioners.  
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I.  INTRODUCTION 

DATA MINING 
The objective of data mining is to identify valid novel, potentially useful, and 

understandable correlations and patterns in existing data [Chung and Gray 1999]. Finding useful 
patterns in data is known by different names (including data mining) in different communities 
(e.g., knowledge extraction, information discovery, information harvesting, data archeology, and 
data pattern processing) [Fayyad, et al, 1996].  The term “data mining” is primarily used by 
statisticians, database researchers, and the MIS and business communities.  The term 
Knowledge Discovery in Databases (KDD) is generally used to refer to the overall process of 
discovering useful knowledge from data, where data mining is a particular step in this process.  
[Fayyad, et al, 1996; Peacock, 1998a; Han and Kamber, 2000] The additional steps in the KDD 
process, such as data preparation, data selection, data cleaning, and proper interpretation of the 
results of the data mining process, ensure that useful knowledge is derived from the data. 

Data mining is an extension of traditional data analysis and statistical approaches in that 
it incorporates analytical techniques drawn from a range of disciplines including, but not limited to,  
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• numerical analysis,  
• pattern matching and areas of artificial intelligence such as machine learning,  
• neural networks and genetic algorithms.    
 

While many data mining tasks follow a traditional, hypothesis-driven data analysis approach, it is 
commonplace to employ an opportunistic, data driven approach that encourages the pattern 
detection algorithms to find useful trends, patterns, and relationships.   

Essentially, the two types of data mining approaches differ in whether they seek to build 
models or to find patterns. The first approach, concerned with building models is, apart from the 
problems inherent from the large sizes of the data sets, similar to conventional exploratory 
statistical methods. The objective is to produce an overall summary of a set of data to identify and 
describe the main features of the shape of the distribution [Hand 1998].  Examples of such 
models include a cluster analysis partition of a set of data, a regression model for prediction, and 
a tree-based classification rule.  In model building, a distinction is sometimes made between 
empirical and mechanistic models [Box and Hunter 1965; Cox 1990; Hand 1995].  The former 
(also sometimes called operational) seeks to model relationships without basing them on any 
underlying theory.  The latter (sometimes called substantive or phenomenological) are based on 
some theory or mechanism for the underlying data generating process.  Data mining, almost by 
definition, is primarily concerned with the operational.  

The second type of data mining approach, pattern detection, seeks to identify small (but 
nonetheless possibly important) departures from the norm, to detect unusual patterns of behavior.  
Examples include unusual spending patterns in credit card usage (for fraud detection), sporadic 
waveforms in EEG traces, and objects with patterns of characteristics unlike others.  It is this 
class of strategies that led to the notion of data mining as seeking “nuggets” of information among 
the mass of data.   In general, business databases pose a unique problem for pattern extraction 
because of their complexity.  Complexity arises from anomalies such as discontinuity, noise, 
ambiguity, and incompleteness [Fayyad, Piatetsky-Shapiro, and Smyth, 1996].  And while most 
data mining algorithms are able to separate the effects of such irrelevant attributes in determining 
the actual pattern, the predictive power of the mining algorithms may decrease as the number of 
these anomalies increase [Rajagopalan and Krovi, 2002]. 

DATA MINING AND DATA WAREHOUSING 
The construction of a data warehouse, which involves data cleaning and data integration, 

can be viewed as an important pre-processing step for data mining.  However, a data warehouse 
is not a requirement for data mining. Building a large data warehouse that consolidates data from 
multiple sources, resolves data integrity problems, and loads the data into a database, can be an 
enormous task, sometimes taking years and costing millions of dollars [Gray and Watson, 1998a].  
If a data warehouse is not available, the data to be mined can be extracted from one or more 
operational or transactional databases, or data marts.   Alternatively, the data mining database 
could be a logical or a physical subset of a data warehouse. 

Data mining uses the data warehouse as the source of information for knowledge data 
discovery (KDD) systems through an amalgam of artificial intelligence and statistics-related 
techniques to find associations, sequences, classifications, clusters, and forecasts [Gray and 
Watson, 1998b].  Figures 1 and 2 illustrate this process. 

As shown in Figure 1, almost all data enter the warehouse from the operational 
environment. The data are then "cleaned" and moved into the warehouse.  

The data continue to reside in the warehouse until they reach an age where one of three 
actions is taken: the data are purged; the data, together with other information, are summarized; 
or the data are archived. An aging process inside the warehouse moves current data into old 
detail data.  
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 Figure 1. Data Flow 
(Adapted from Gray and Watson 1998b) 

 
 

 
 

Figure 2. Data Warehouse Architecture 
                    (Adapted from Gray and Watson 1998b) 
 

 
Typically the data warehouse architecture has three components:  
 
• Data acquisition software (back-end) which extracts data from legacy systems and 

external sources, consolidates and summarizes the data, and loads them into the 
data warehouse.   

• The data warehouse itself contains the data and associated database software. It is 
often referred to as the "target database." 

• The client (front-end) software, which allows users and applications (such as DSS 
and EIS) to access and analyze data in the warehouse.  

 
These three components may reside on different platforms, or two or three of them may 

be on the same platform. Regardless of the platform combination, all three components are 
required.   

DATA MINING AND OLAP  
The question of how data warehousing and OLAP relate to data mining is a question that 

often arises.  The relationship can be succinctly captured as follows: “ The capability of OLAP to 
provide multiple and dynamic views of summarized data in a data warehouse sets a solid 
foundation for successful data mining.” [Han and Kamber 2001]  Therefore, data mining and 
OLAP can be seen as tools than can be used to complement one another.  The term OLAP, 
standing for Online Analytical Processing, is often used to describe the various types of query-
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driven analysis that are undertaken when analyzing the data in a database or a data warehouse 
[Berry and Linoff 2000].  OLAP provides for the selective extraction and viewing of data from 
different points of view; these views are generally referred to as dimensions [Fayyad 2001].   
Each dimension can and generally has many levels of aggregation, i.e. a time dimension can be 
organized into days, weeks, and years.   

The essential distinction between OLAP and data mining is that OLAP is a data 
summarization/aggregation tool, while data mining thrives on detail. Data mining allows the 
automated discovery of implicit patterns and interesting knowledge that’s hiding in large amounts 
of data [Han and Kamber 2001].  Prior to acting on the pattern uncovered by data mining, an 
analyst may use OLAP in order to determine the implications of using the discovered pattern in 
governing a decision.  And while OLAP is considered part of the spectrum of decision support 
tools, it goes a step further than the traditional query and reporting tools.  More specifically, the 
traditional query and reporting tools describe “what” is in a database, while OLAP is used to 
answer “why” certain things are true in that the user forms a hypothesis about a relationship and 
verifies it with a series of queries against the data.  For example, an analyst might want to 
determine the factors that lead to loan defaults.  She might initially hypothesize that people with 
low incomes are bad credits risks and analyze the database with OLAP to verify or disprove this 
assumption. 

Expressions used in OLAP that describe the various functions include: 
  
• rolling up (producing marginals),  
• drilling (going down levels of aggregation—the opposite of rolling up),  
• slicing (conditioning on one variable),  
• dicing (conditioning on many variables) and  
• pivoting (rotating the data axes to provide an alternative presentation of the data 

[Hand 1998; Han and Kamber 2001]. 
 
A powerful paradigm that integrates OLAP with data mining technology is OLAM (Online 

Analytical Mining) which is sometimes referred to as OLAP mining [Han and Kamber 2001].  
OLAM systems are particularly important because most data mining tools need to work on 
integrated, consistent, and cleaned data, which again, requires costly data cleaning, data 
transformation, and data integration as pre-processing steps.  A data warehouse constructed by 
such pre-processing serves as a valuable source of high-quality data for OLAP as well as for 
OLAM.  OLAM provides a multi-dimensional view of its data and creates an interactive data 
mining environment whereby users can dynamically select data mining and OLAP functions, 
perform OLAP operations (such as drilling, slicing, dicing and pivoting on the data mining results), 
as well as perform mining operations on OLAP results, that is, mining different portions of data at 
multiple levels of abstraction [Han and Kamber 2001]. 

DATA MINING IN PERSPECTIVE 
While the term data mining is often used rather loosely, it is generally a term that’s used 

for a specific set of activities, all of which involve extracting meaningful new information from 
data.  However, the term data mining is not new to statisticians.  It is a term synonymous with 
data dredging or data snooping and has been used to describe the process of trawling through 
data in the hope of identifying patterns.  Data snooping occurs when a given dataset is used more 
than once for inference or model selection [White 2000]. The connotation is derogatory because a 
sufficiently exhaustive search will certainly throw up patterns of some kind—by definition, data 
that are not simply uniform contain differences that can be interpreted as patterns.  The trouble is 
that many of these “patterns” will simply be a product of random fluctuations, and will not 
represent any underlying structure in the data.  The objective of data analysis is not to model the 
fleeting random patterns of the moment, but to model the underlying structures that give rise to 
consistent and replicable patterns.   

In summary, data mining helps organizations focus on the most important information 
available in their existing databases. But data mining is only tool; it does not eliminate the need to 
know the business, to understand the data, or to understand the analytical methods involved.  It 
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must be remembered that the predictive relationships found via data mining are not necessarily 
causes of an action or a behavior. Causal inference from uncontrolled convenience samples,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

such as those used in data mining, are subject to several sources of error such as latent 
variables, sample selection bias, model equivalence and non-stationarity of the population being  
studied, or population drift [Glymour and Madigan 1996; Hand 1998].  Further, data mining 
assists analysts with finding patterns and relationships in the data – it does not indicate the value 
of the patterns to the organization. The patterns uncovered by data mining must be verified and 
validated in an appropriate context.   

II. THE BUSINESS IMPERATIVE 

Data mining offers value across a broad spectrum of industries and can be used as a 
vehicle to increase profits by reducing costs and/or raising revenue.  A few of the common ways 
in which data mining can accomplish those objectives are  

• lowering costs at the beginning of the product life cycle during research and 
development;  

• determining the proper bounds for statistical process control methods in automated 
manufacturing processes;  

SIDEBAR 1 
 

ACTORS IN DATA MINING 
 
Data mining is performed by people, many of whom will be discussed in this tutorial. They 
include: 
 
The project leader, who has the overall responsibility for planning, coordinating, executing, and 
deploying the data mining project. 
 
The data mining client, who is the business domain expert that requests the project and utilizes 
the results, but generally does not possess the technical skills needed to participate in the 
execution of the more technical phases of the data mining project such as data preparation and 
modeling. 
 
The data mining analyst, who thoroughly understands, from a business perspective, what the 
client wants to accomplish and assists in translating those business objectives into technical 
requirements to be used in the subsequent development of the data mining model(s). 
 
The data mining engineer, who develops, interprets and evaluates the data mining model(s) in 
light of the business objectives and business success criteria.  Data mining engineering is 
performed in consultation with the data mining client and the data mining analyst in order to 
assist in achieving business ends. 
 
The IT analyst, who provides access to the hardware, software and data needed to complete 
the data mining project successfully.  It is important to note that data mining is a technology that 
needs to co-exist harmoniously with other technologies in the organization.  In addition, the data 
to be mined could be coming from virtually any existing system, database, or data warehouse in 
the organization. 
___________________________________ 
Depending on the scale and scope of the project, multiple individuals may assume each of the 
various roles.  For example, a large project would likely need several data mining analysts and 
data mining engineers. 
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• eliminating expensive mailings to customers who are unlikely to respond to an offer 
during a marketing campaign;  

• facilitating one-to-one marketing and mass customization opportunities in customer 
relationship management. 

 
Many organizations use data mining to help manage all phases of the customer life cycle, 

including acquiring new customers, increasing revenue from existing customers, and retaining 
good customers.  By determining characteristics of good customers (profiling), a company can 
target prospects with similar characteristics.  By profiling customers who bought a particular 
product a firm can focus attention on similar customers who have not bought that product (cross-
selling).  Profiling also enables a company to act to retain customers who are at risk for leaving 
(reducing churn or attrition), because it is usually far less expensive to retain a customer than 
acquire a new one [Berry and Linoff 2000]. However, profiling introduces issues of privacy 
(Section VII).  

Examples of other industries where data mining can make a contribution include:   
 

• Telecommunications and credit card companies are two of the leaders in applying data 
mining to detect fraudulent use of their services.   

• Insurance companies and stock exchanges are interested in applying data mining to 
reduce fraud.   

• Medical applications use data mining to predict the effectiveness of surgical procedures, 
medical tests, or medications.   

• Financial firms use data mining to determine market and industry characteristics as well 
as to predict individual company and stock performance.   

• Retailers make use of data mining to decide which products to stock in particular stores 
(and even how to place them within a store), as well as to assess the effectiveness of 
promotions and coupons.   

• Pharmaceutical firms mine large databases for chemical compounds and genetic material 
to discover substances that might be candidates for development as agents for the 
treatments of disease. 

III. THE TECHNICAL IMPERATIVE 

Data mining uses  
 

• the classical statistical procedures such as logistic regression, discriminant 
analysis, and cluster analysis,  

• machine learning techniques such as neural networks, decision trees, and 
genetic algorithms.    

 
In the continuum of data analysis techniques, the disciplines of statistics and of machine learning 
often overlap.   

DATA MINING AND MACHINE LEARNING 
Machine learning is the study of computational methods for improving performance by 

mechanizing the acquisition of knowledge from experience [Langley and Simon 1995].  Machine 
learning aims to provide increasing levels of automation in the knowledge engineering process, 
replacing much time-consuming human activity with automatic techniques that improve accuracy 
or efficiency by discovering and exploiting regularities in training data1.  Although machine 
learning algorithms are central to the data mining process, it is important to note that the process 
also involves other important steps, including:  

 

                                            
1 Training data is data that is used to estimate or train a model.   Training data are existing data that’s pre-
classified in that the outcomes are already known. 
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• building and maintaining the database,  
• data formatting and cleansing,  
• data visualization and summarization,  
• the use of human expert knowledge to formulate the inputs to the learning algorithm 

and to evaluate the empirical regularities it discovers, and  
• determining how to deploy the results. 
 
Following are the basic learning algorithms [Peacock 1998b; Goebel and Gruenwald, 

1999].  For an exhaustive review of machine learning algorithms, see Kennedy et al. [1997].  
Neural Networks (NN) are a class of systems modeled after the human brain.  As the 

human brain consists of millions of neurons that are inter-connected by synapses, NN are formed 
from large numbers of simulated neurons, connected to each other in a manner similar to brain 
neurons.  As in the human brain, the strength of neuron inter-connections may change (or be 
changed by the learning algorithm) in response to a presented stimulus or an obtained output, 
which enables the network to “learn”. 

A disadvantage of NN is that building the initial neural network model can be especially 
time-intensive because input processing almost always means that raw data must be 
transformed. Variable screening and selection requires large amounts of the analysts’ time and 
skill. Also, for the user without a technical background, figuring out how neural networks operate 
is far from obvious. 

Case-Based Reasoning (CBR) is a technology that tries to solve a given problem by 
making direct use of past experiences and solutions.  A case is usually a specific problem that 
was encountered and solved previously.  Given a particular new problem, CBR examines the set 
of stored cases and finds similar ones.  If similar cases exist, their solution is applied to the new 
problem, and the problem is added to the case base for future reference. 

A disadvantage of CBR is that the solutions included in the case database may not be 
optimal in any sense because they are limited to what was actually done in the past, not 
necessarily what should have been done under similar circumstances. Therefore, using them 
may simply perpetuate earlier mistakes. 

Genetic Algorithms (GA) operate through procedures modeled upon the evolutionary 
biological processes of selection, reproduction, mutation, and survival of the fittest to search for 
very good solutions to prediction and classification problems.  GA are used in data mining to 
formulate hypotheses about dependencies between variables in the form of association rules or 
some other internal formalism.   

A disadvantage of GA is that the solutions are difficult to explain. Also, they do not 
provide interpretive statistical measures that enable the user to understand why the procedure 
arrived at a particular solution.  

Decision Trees (DT) are like those used in decision analysis where each non-terminal 
node represents a test or decision on the data item considered.  Depending on the outcome of 
the test, one chooses a certain branch.  To classify a particular data item, one would start at the 
root node and follow the assertions down until a terminal node (or leaf) is reached; at that point, a 
decision is made.  DT can also be interpreted as a special form of a rule set, characterized by 
their hierarchical organization of rules. 

A disadvantage of DT is that trees use up data very rapidly in the training2 process. They 
should never be used with small data sets. They are also highly sensitive to noise in the data, and 
they try to fit the data exactly, which is referred to as “overfitting.  Overfitting3, discussed further in 
Section V on modeling, means that the model depends too strongly on the details of the particular 
dataset used to create it.  When a model suffers from overfitting, it is unlikely to be externally valid 
(i.e., it won't hold up when applied to a new data set).  

Association Rules (AR) are statements about relationships between the attributes of a 
known group of entities and one or more aspects of those entities that enable predictions to be 
                                            
2 The training process refers to the process of estimating a model’s parameters whereby the machine 
learning techniques learn or are trained on existing pre-classified data. 
3 An overfitted model occurs when the specification of the model is in large part an artifact of the 
idiosyncrasies of the data set used to build it and can reduce external validity. 
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made about aspects of other entities who are not in the group, but who possess the same 
attributes.  More generally, AR state a statistical correlation between the occurrences of certain 
attributes in a data item, or between certain data items in a data set.  The general form of an AR 
is X1…Xn  => Y[C,S]  which means that the attributes X1,… ,Xn predict Y with a confidence C and 
a significance S.  

While these so-called first-generation algorithms are widely used, they have significant 
limitations. They typically assume the data contains only numeric and textual symbols and do not 
contain images. They assume the data was carefully collected into a single database with a 
specific data mining task in mind. Furthermore, these algorithms tend to be fully automatic and 
therefore fail to allow guidance from knowledgeable users at key stages in the search for data 
regularities.  

DATA MINING AND STATISTICS  
The disciplines of statistics and data mining both aim to discover structure in data.  So 

much do their aims overlap, that some people regard data mining as a subset of statistics.  But 
that is not a realistic assessment as data mining also makes use of ideas, tools, and methods 
from other areas – particularly database technology and machine learning, and is not heavily 
concerned with some areas in which statisticians are interested [Hand 1999].  Statistical 
procedures do, however, play a major role in data mining, particularly in the processes of 
developing and assessing models.  Most of the learning algorithms use statistical tests when 
constructing rules or trees and also for correcting models that are overfitted.   Statistical tests are 
also used to validate machine learning models and to evaluate machine learning algorithms.    

Some of the commonly used statistical analysis techniques are discussed below.  For an 
extensive review of classical statistical algorithms see Johnson and Wicheren [1998]. 

Descriptive and Visualization Techniques include simple descriptive statistics such as: 
• averages and measures of variation,  
• counts and percentages, and 
• cross-tabs and simple correlations 

 They are useful for understanding the structure of the data.  Visualization is primarily a discovery 
technique and is useful for interpreting large amounts of data; visualization tools include 
histograms, box plots, scatter diagrams, and multi-dimensional surface plots [Tegarden 1999]. 

Cluster Analysis seeks to organize information about variables so that relatively 
homogeneous groups, or "clusters," can be formed. The clusters formed with this family of 
methods should be highly internally homogenous (members are similar to one another) and 
highly externally heterogeneous (members are not like members of other clusters).  

Correlation Analysis measures the relationship between two variables. The resulting 
correlation coefficient shows if changes in one variable will result in changes in the other. When 
comparing the correlation between two variables, the goal is to see if a change in the 
independent variable will result in a change in the dependent variable. This information helps in 
understanding an independent variable's predictive abilities.  Correlation findings, just as 
regression findings, can be useful in analyzing causal relationships, but they do not by 
themselves establish causal patterns.   

Discriminant Analysis is used to predict membership in two or more mutually exclusive 
groups from a set of predictors, when there is no natural ordering on the groups. Discriminant 
analysis can be seen as the inverse of a one-way multivariate analysis of variance (MANOVA) in 
that the levels of the independent variable (or factor) for MANOVA become the categories of the 
dependent variable for discriminant analysis, and the dependent variables of the MANOVA 
become the predictors for discriminant analysis. 

Factor Analysis is useful for understanding the underlying reasons for the correlations 
among a group of variables.  The main applications of factor analytic techniques are to reduce the 
number of variables and to detect structure in the relationships among variables; that is to classify 
variables. Therefore, factor analysis can be applied as a data reduction or structure detection 
method.  In an exploratory factor analysis, the goal is to explore or search for a factor structure.  
Confirmatory factor analysis, on the other hand, assumes the factor structure is known a priori 
and the objective is to empirically verify or confirm that the assumed factor structure is correct. 
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Regression Analysis is a statistical tool that uses the relation between two or more 
quantitative variables so that one variable (dependent variable) can be predicted from the other(s) 
(independent variables).  But no matter how strong the statistical relations are between the 
variables, no cause-and-effect pattern is necessarily implied by the regression model.  
Regression analysis comes in many flavors, including simple linear, multiple linear, curvilinear, 
and multiple curvilinear regression models, as well as logistic regression, which is discussed next.  

Logistic Regression is used when the response variable is a binary or qualitative 
outcome.  Although logistic regression finds a "best fitting" equation just as linear regression 
does, the principles on which it does so are rather different. Instead of using a least-squared 
deviations criterion4 for the best fit, it uses a maximum likelihood method, that is, it maximizes the 
probability of obtaining the observed results given the fitted regression coefficients. Because 
logistic regression does not make any assumptions about the distribution for the independent 
variables, it is more robust to violations of the normality assumption.  Some of the more common 
flavors that logistic regression comes in include simple, multiple, polytomous and Poisson logistic 
regression models. 

DATA ANALYSIS TASKS AND TECHNIQUES  
Several data mining problem types, or analysis tasks are typically encountered during a 

data mining project.  Depending on the desired outcome, several data analysis techniques with 
different goals may be applied successively to achieve a desired result.  For example, to 
determine which customers are likely to buy a new product, a business analyst may need first to 
use cluster analysis to segment the customer database, then apply regression analysis to predict 
buying behavior for each cluster.  The data mining analysis tasks typically fall into the general 
categories listed below.  For each data analysis task, an example of a useful data analysis 
technique is presented.   
Again, there is a continuum of data analysis techniques and the two disciplines of statistics and 
machine learning often overlap.  Table 1 is a matrix that summarizes the data mining analysis 
tasks and the techniques useful for performing these tasks.  The table is representative of the 
many possibilities since the permutations and combinations of data analysis tasks and techniques 
are numerous.  

Data Summarization gives the user an overview of the structure of the data and is 
generally carried out in the early stages of a project.  This type of initial exploratory data analysis 
can help to understand the nature of the data and to find potential hypotheses for hidden 
information. Simple descriptive statistical and visualization techniques generally apply. 

Segmentation separates the data into interesting and meaningful sub-groups or classes.  
In this case, the analyst can hypothesize certain subgroups as relevant for the business question 
based on prior knowledge or based on the outcome of data description and summarization.  
Automatic clustering techniques can detect previously unsuspected and hidden structures in data 
that allow segmentation. Clustering techniques, visualization and neural nets generally apply. 

Classification assumes that a set of objects—characterized by some attributes or 
features—belong to different classes.  The class label is a discrete qualitative identifier; for 
example, large, medium, or small.  The objective is to build classification models that assign the 
correct class to previously unseen and unlabeled objects.  Classification models are mostly used 
for predictive modeling.  Discriminant analysis, decision tree, rule induction methods, and genetic 
algorithms generally apply.    

Prediction is very similar to classification.  The difference is that in prediction, the class 
is not a qualitative discrete attribute but a continuous one.   The goal of prediction is to find the 
numerical value of the target attribute for unseen objects; this problem type is also known as 
regression, and if the prediction deals with time series data, then it is often called forecasting.  
Regression analysis, decision trees, and neural nets generally apply.    
                                            
 
4 The least-squares criterion is a common method used in regression analysis, which finds the regression 
coefficients that minimize the sum of the squared deviation of the predicted values of the model from the 
observed values of the data. 
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Table 1. Data Analysis Tasks and Techniques 
 

DATA 
ANALYSIS 
TECHNIQUES 

 
Data 

Summarization 

 
Segmen- 

tation 

 
Classifi-
cation 

 
Prediction 

 
Dependency 

Analysis 
Descriptive 

and 
Visualization 

♦  ♦    ♦  

Correlation 
Analysis     ♦  
Cluster 

Analysis  ♦     

Discriminant 
Analysis   ♦    

Regression 
Analysis    ♦  ♦  
Neural 

Networks  ♦  ♦  ♦   

Case-Based 
Reasoning     ♦  
Decision 

Trees   ♦  ♦   

Association 
Rules     ♦  

 
 
Dependency analysis deals with finding a model that describes significant 

dependencies (or associations) between data items or events.  Dependencies can be used to 
predict the value of an item given information on other data items.  Dependency analysis has 
close connections with classification and prediction because the dependencies are implicitly used 
for the formulation of predictive models.  Correlation analysis, regression analysis, association 
rules, case-based reasoning and visualization techniques generally apply. 

IV. DATA MINING AND THE WEB 

With the large amount of information available online, the Web is a fertile area for data 
mining and knowledge discovery.  In Web mining, data can be collected at the  

 
• server-side,  
• client-side,  
• proxy servers, or  
• obtained from an organization’s database (which may contain business data or 

consolidated web data).   
 
Each type of data collection differs not only in terms of the location of the data source, but also  
 

• the kinds of data available,  
• the segment of population from which the data was collected, and its 
•  method of implementation.   

 
A meta-analysis of the web mining literature, categorized web mining into three areas of interest 
based on which part of the web is to be mined [Kosala and Blockeel, 2000; Srivastava, et al, 
2000]:   
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• Web Content Mining, 
•  Web Structure Mining and  
• Web Usage Mining.  

 
The three areas are described next , although the distinctions among them are not clear-cut. 

Web content mining describes the discovery of useful information from the web 
content/data/documents.  Essentially, the web content data consists of the data the web page 
was designed to convey to the users, including text, image, audio, video, metadata, and 
hyperlinks.    

Web structure mining tries to discover the model underlying the link structures of the 
Web.  Intra-page structure information includes the arrangement of various HTML or XML tags 
within a given page, while inter-page structure information is hyper-links connecting one page to 
another.  This model can be used to categorize web pages and is useful to generate information 
such as the similarity and relationship among Web sites. 

Web usage mining (also referred to as click-stream analysis [Edelstein 2001]) is the 
process of applying data mining techniques to the discovery of usage patterns from Web data, 
and is targeted towards applications [Srivastava, et al. 2000].  It tries to make sense of the data 
generated by the Web surfer’s sessions or behaviors.  While the web content and structure 
mining use the real or primary data on the web, web usage mining mines the secondary data 
derived from the interactions of the users during Web sessions.  Web usage data includes the 
data from web server access logs, browser logs, user profiles, registration data, user sessions or 
transactions, cookies, user queries, mouse clicks, and any other data as the result of interaction 
with the Web. 

Given its application potential, particularly in terms of electronic commerce, interest in 
web usage mining, increased rapidly  in both the research and practice communities.  Section V 
will provide a high level overview of the web usage mining process [Srivastava, et al 2000]. 

As shown in Figure 3, three main tasks are performed in web usage mining; 
preprocessing, pattern discovery, and pattern analysis. 

Preprocessing consists of converting the usage, content, and structure contained in the 
various available data sources into the data abstractions necessary for pattern discovery.  It is 
typically the most difficult task in the web usage mining process due to the incompleteness of the 
available data.  Some of the typical problems include:   

 
• single IP address/multiple server sessions,  
• multiple IP address/single server sessions,  
• multiple IP addresses/single user and  
• multiple agent/single user.   
 

Other challenges associated with data collection include: 
 

• Raw click-stream data needs to be collected from multiple servers 
• Individual customer data is usually buried in a mass of other data regarding pages 

served, hosts, referring pages, and browser types 
• A single page request can generate multiple entries in server logs 
• Taking a sequence of log records and creating a session of page views involves lots 

of data cleansing to eliminate extraneous information 
• Identifying the sessions contained in the data stream requires the use of cookies or 

embedding session identification numbers in URLs 
• The use of proxy servers, where servers other than the home server fulfill customer 

requests, makes it difficult to identify the end of a session and the reason the session 
ended. 
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Figure 3. A High Level Web Usage Mining Process 
 (Adapted from Srivastava, et al 2000). 

 
 
 

 
Pattern discovery draws upon methods and algorithms developed from several fields 

such as statistics, data mining, machine learning and pattern recognition (discussed in Section 
III).  The methods and algorithms are similar to those developed for non-Web domains such as 
statistical analysis, clustering, and classification, but those methods must take into consideration 
the different kinds of data abstractions and prior knowledge available for Web Mining.  For 
example, in association rule discovery, the notion of a transaction for market-basket analysis 
does not take into consideration the order in which items are selected.  However, in Web Usage 
Mining, a server session is an ordered sequence of pages requested by a user. 

Pattern analysis is the last step in the overall Web Usage mining process.  The 
motivation behind pattern analysis is to filter out the uninteresting rules or patterns from the 
dataset found in the pattern discovery phase.  The exact methodology used for analysis is usually 
governed by the application for which Web mining is to be done.  The most common form of 
pattern analysis consists of a knowledge query mechanism such as SQL.  Another method is to 
load usage data into a data cube to perform OLAP operations. Visualization techniques, such as 
graphing patterns or assigning colors to different values, can highlight patterns.  The content and 
structure information can be used to filter out patterns which contain pages of a certain use type 
or content, or pages that match a certain hyperlink structure. 

Despite being a rich source for data mining, the Web poses challenges for effective 
resource and knowledge discovery particularly in terms of data collection. The Web seems to be 
too huge for effective data warehousing and data mining.  Also, Web pages are complex and lack 
a unifying structure.  The highly dynamic nature of the Web as an information source poses 
challenges as well.   

V.  METHODOLOGICAL CONSIDERATIONS 

Many data mining process methodologies are available.  However, the various steps do 
not differ much from methodology to methodology.  Two popular methodologies used by data 
mining tools are the SEMMA process for SAS Enterprise Miner and the 5 A’s process for SPSS 
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Clementine. However, CRISP-DM evolved to become the de facto industry standard.  CRISP-DM 
was conceived in mid-1997 and is non-proprietary, documented, and freely available.  It was 
developed using input from more than 200 data mining users and data mining tool and service 
providers and is designed to provide a generic process model that can be specialized according 
to the needs of any particular company or industry.  

SAS - THE SEMMA ANALYSIS CYCLE 
SAS developed a data mining analysis cycle known by the acronym SEMMA.  This 

acronym stands for the five steps of the analyses that are generally a part of a data mining 
project:   

 
1. Sample,  4. Model 
2. Explore 5. Assess 
3. Modify  

  
 

as illustrated in Figure 4.  The SEMMA analysis cycle guides the analyst through the process of 
exploring the data using visual and statistical techniques, transforming data to uncover the most 
significant predictive variables, modeling the variables to predict outcomes, and assessing the 
model by testing it with new data.   

 

 
Figure 4. The SEMMA Analysis Cycle. 

 
Sample:  the first step in is to create one or more data tables by sampling data from the 

data warehouse.  Mining a representative sample instead of the entire volume drastically reduces 
the processing time required to obtain business information. 

EXPLORE 

SAMPLE 

MODIFY 

MODEL 

ASSESS 

Sampling 
yes/no 

Clustering, 
Associations

Variable 
selection, 
creation 

Data 
transformation

 

Other stat 
models 

Logistic 
models 

Tree-based 
models 

 

Neural 
networks 

 

Model 
assessment 

Data 
visualization 

 



280                            Communications of the Association for Information Systems (Volume 8, 2002) 267-296  

                                                                                           Data Mining: A Conceptual Overview by J. Jackson 

Explore:  after sampling the data, the next step is to explore the data  visually or 
numerically for trends or groupings.  Exploration helps to refine the discovery process.  
Techniques such as factor analysis, correlation analysis and clustering are often used in the 
discovery process. 

Modify:  modifying the data refers to creating, selecting, and transforming one or more 
variables to focus the model selection process in a particular direction, or to modify the data for 
clarity or consistence. 

Model:  creating a data model involves using the data mining software to search 
automatically for a combination of data that predicts the desired outcome reliably. 

Assess:  the last step is to assess the model to determine how well it performs.  A 
common means of assessing a model is to set aside a portion of the data during the sampling 
stage.  If the model is valid, it should work for both the reserved sample and for the sample that 
was used to develop the model. 
 
SPSS  - THE 5 A’S PROCESS 

SPSS originally developed a data mining analysis cycle called the 5 A’s Process5.  The 
five steps in the process are  

• Assess • Act 
• Access • Automate 
• Analyze  

As illustrated in Figure 5. The 5 A’s process methodology is similar to that of the SEMMA 
analysis cycle.   

 

 

 
Figure 5. The 5A’s Process 

CRISP-DM – THE DE FACTO STANDARD FOR INDUSTRY 
The CRISP-DM project began in mid-1997 and was funded in part by the European 

commission.  The leading sponsors were: 
                                            

5 Note that during the second quarter of 2001, SPSS removed all references to the 5 A’s process 
methodology from it’s web site.  SPSS now actively supports the CRISP-DM process model.  SPSS  uses 
the CRISP-DM model in it’s consulting practice, offers a data mining training series built around CRISP-DM 
and provides support for CRISP-DM in Clementine, SPSS’s data mining workbench.  The Clementine 
support for CRISP-DM makes it convenient for Clementine users to structure data mining projects according 
to the CRISP-DM process methodology. 
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• NCR,  
• DaimlerChrysler, 
• Integral Solutions Limited (ISL) (now a part of SPSS), and 
• OHRA, a Netherlands’ independent insurance company 

 
The goal of the project was to define and validate an industry- and tool-neutral data 

mining process model that which would make the development of large as well as small data 
mining projects faster, cheaper, more reliable and more manageable. 

The project started in July 1997 and was planned to be completed within 18 months. 
However, the work of the CRISP-DM received substantial international interest, which caused the 
project to put emphasis on disseminating its work.  As a result, the project end date was pushed 
back to and completed on April 30, 1999. The CRISP-DM model is illustrated in Figure 6.  

BUSINESS UNDERSTANDING 
This initial phase focuses on understanding the project objectives and requirements from 

a business perspective, and then converting this knowledge into a data mining problem definition, 
and a preliminary plan designed to achieve the objectives. 

DATA UNDERSTANDING 
The data understanding phase starts with an initial data collection and proceeds with 

activities to become familiar with the data, to identify data quality problems, to discover first 
insights into the data, or to detect interesting subsets to form hypotheses for hidden information. 

DATA PREPARATION 
The data preparation phase covers all activities to construct the final dataset (data that 

will be fed into the modeling tool(s)) from the initial raw data.  

 
 

Figure 6. The CRISP-DM Model 
 

Data preparation tasks are likely to be performed multiple times, and not in any prescribed order. 
Tasks include table, record, and attribute selection as well as transformation and cleaning of data 
for modeling tools. 
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MODELING 
In this phase, various modeling techniques are selected and applied, and their 

parameters are calibrated to optimal values. Typically, there are several techniques for the same 
data mining problem type. Some techniques have specific requirements on the form of data. 
Therefore, stepping back to the data preparation phase is often needed. 

EVALUATION 
At this stage in the project the model (or models) built appears to have high quality from a 

data analysis perspective. Before proceeding to final deployment of the model, it is important to 
evaluate the model more thoroughly, and review the steps executed to construct the model, to be 
certain it properly achieves the business objectives. A key objective is to determine if there is 
some important business issue that has not been considered sufficiently. At the end of this phase, 
a decision on the use of the data mining results should be reached. 

DEPLOYMENT 
Creation of the model is generally not the end of the project. Even if the purpose of the 

model is to increase knowledge of the data, the knowledge gained will need to be organized and 
presented in a way that the client can use. Depending on the requirements, the deployment 
phase can be as simple as generating a report or as complex as implementing a repeatable data 
mining process.  In many cases it will be the client, not the data analyst, who will carry out the 
deployment steps. However, even if the analyst will not carry out the deployment effort it is 
important for the client to understand up front what actions will need to be carried out to make use 
of the models created. 

V.  ILLUSTRATION OF A DATA MINING PROCESS METHODOLOGY 

The general form of the CRISP-DM data mining process methodology is further detailed 
and illustrated from a “how to” perspective in Figure 7 (shown on the next page).  CRISP-DM 
does not provide details on two critical areas in the modeling process; building and assessing the 
model.  While these two procedures are generally automated and most data mining tools provide 
support for them, it is important to gain an understanding of the purpose and focus of these steps.  
And to that end, (step 4)  the Build Model and Assess Model portions of the Modeling phase of 
the CRISP-DM model, is supplemented with additional detail and illustrations.   

 
 
 
 

 
1.  Business Understanding  

This initial phase focuses on understanding the project objectives and requirements from 
a business perspective, and then converting this knowledge into a data mining problem definition, 
and a preliminary plan designed to achieve the objectives. 
1.1 Determine Business Objectives 

The first objective of the data analyst is to understand thoroughly, from a business 
perspective, what the client really wants to accomplish.  Often the client has many competing 
objectives and constraints that must be properly balanced.  The analyst’s goal is to uncover 
important factors, at the beginning, that can influence the outcome of the project.  A possible 
consequence of neglecting this step is to expend a great deal of effort producing the right 
answers to the wrong questions. 
1.2 Assess Situation  

This task involves more detailed fact-finding about all of the resources, constraints, 
assumptions and other factors that should be considered in determining the data analysis goal 
and project plan.  In the previous task, the objective is to get to the crux of the situation quickly. 
Here, the analyst wants to flesh out the details. 
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Figure 7. - CRISP-DM Data Mining Process Methodology 

1.3 Determine Data Mining Goals 
A business goal states objectives in business terms.  A data mining goal states project 

objectives in technical terms.  For example, the business goal might be “Increase catalog sales to 
existing customers.”  A data mining goal might be “Predict how many widgets a customer will buy, 
given their purchases over the past three years, demographic information (e.g., age, salary, city, 
Zip code), and the price of the item.” 
1.4 Produce Project Plan 

Describe the intended plan for achieving the data mining goals and thereby achieving the 
business goals.  The plan should specify the anticipated set of steps to be performed during the 
rest of the project including an initial selection of tools and techniques. 
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2.  Data Understanding  

The data understanding phase starts with an initial data collection. It proceeds with 
activities  

• to get familiar with the data,  
• to identify data quality problems,  
• to discover first insights into the data, or to  
• detect interesting subsets to form hypotheses for hidden information. 

2.1 Collect Initial Data 
Acquire within the project the data (or access to the data) listed in the project resources.  

This initial collection includes data loading if necessary for data understanding.  For example, if 
applying a specific tool for data understanding, it makes perfect sense to load the data into this 
tool.  This effort may lead to initial data preparation steps. 
2.2 Describe Data 

Examine the “gross” or “surface” properties of the acquired data and report on the results. 
2.3 Explore Data 

This task tackles the data mining questions that can be addressed using querying, 
visualization and reporting.  These analyses may address the data mining goals directly.  They 
may also contribute to or refine the data description and quality reports and feed into the 
transformation and other data preparation needed for further analysis. 
2.4 Verify Data Quality 

Examine the quality of the data, addressing questions such as:  is the data complete?  Is 
it correct?  Are these missing values?  If so how are they represented, where do they occur and 
how common are they? 

 
 
 
 
 

3.  Data Preparation  
The data preparation phase covers all activities to construct the final dataset (data that 

will be fed into the modeling tool(s)) from the initial raw data. Data preparation tasks are likely to 
be performed multiple times, and not in any prescribed order. Tasks include table, record, and 
attribute selection as well as transformation and cleaning of data for modeling tools. 
3.1  Select Data 

Decide on the data to be used for analysis.  Criteria include relevance to the data mining 
goals, quality and technical constraints such as limits on data volume or data types.  Note that 
data selection covers selection of attributes (columns) as well as selection of records (rows) in a 
table. 
3.2  Clean Data 

Raise the data quality to the level required by the selected analysis techniques.  
Problems that can occur with “dirty data” include missing data, empty values, non-existent values, 
and incomplete data.  Data cleaning may involve selection of clean subsets of the data, the 
insertion of suitable defaults or more ambitious techniques such as replacing the dirty data with 
derived values, or building separate models for those entities that possess dirty data. However, 
these approaches can introduce additional problems.  Specifically, filtering the problematic data 
can introduce sample bias into the data and using data overlays could introduce missing values  
3.3 Construct Data 

This task includes constructive data preparation operations such as the production of 
derived attributes, entire new records, or transformed values for existing attributes. 
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3.4  Integrate Data 
 Two methods used for integrating data are merging data and generating aggregate 

values.  In these methods information is combined from multiple tables or other information 
sources to create new records or values.  For example, merging tables refers to joining together 
two or more tables that have different information about the same objects; generating aggregate 
values refers to computing new values computed by summarizing information from multiple 
records, tables or other information sources. 
3.5 Format Data 

Formatting transformations refer to primarily syntactic modifications made to the data that 
do not change its meaning, but might be required by the modeling tool. 

 
 
 
 

4.  Modeling  
In this phase, various modeling techniques are selected and applied, and their 

parameters are calibrated to optimal values. Typically, several techniques can be applied to the 
same data mining problem type. Some techniques require a specific form of data. Therefore, 
stepping back to the data preparation phase is often needed. 
4.1 Select Modeling Technique 

As the first step in modeling, select the actual modeling technique to be used.  If a tool 
was selected in business understanding (Phase 1), this task refers to selecting the specific 
modeling technique, e.g., building decision trees or generating a neural network. 
4.2 Generate Test Design 

Prior to building a model, a procedure needs to be defined to test the model’s quality and 
validity.  For example, in supervised data mining tasks such as classification, it is common to use 
error rates as quality measures for data mining models.  Therefore, if the test design specifies 
that the dataset should be separated into training and test sets, the model is built on the training 
set and its quality estimated on the test set. 
4.3 Build Model 

The purpose of building models is to use the predictions to make more informed business 
decisions.  The most important goal when building a model is stability, which means that the 
model should make predictions that will hold true when it’s applied to yet unseen data.  
Regardless of the data mining technique being used, the basic steps used for building predictive 
models are the same.   

As shown in Figure 8, the model set first needs to be split into three components: (1)the  
training set, (2) the test set, and (3) the evaluation set.    

Figure 8. Data Sets 
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A fourth dataset, the score set, is not part of the model set.   
Each of these components should be totally separate; that is, they should not have any 

records that are in common since each set performs a distinct purpose. 
Models are created using data from the past in order for the model to make predictions 

about the future.  This process is called training the model.  In this step, the data mining 
algorithms find patterns that are of predictive value.  Next, the model is refined using the test set.  
The model needs to be refined to prevent it from memorizing the training set.  This step ensures 
that the model is more general (i.e. stable) and will perform well on unseen data.  Next, the 
performance of the model is estimated using the evaluation set.  The evaluation set is entirely 
separate and distinct from the training and test sets.  The evaluation set (or hold out set) is used 
to assess the expected accuracy of the model when it is applied to data outside the model set.  
Finally, the model is applied to the score set.  The score set is not pre-classified and is not part of 
the model set used to create the data model.  The outcomes for the score set are not known in 
advance.  The final model is applied to the score set to make predictions.  The predictive sores 
will, presumably, be used to make more informed business decisions.  The process is 
summarized in Figure 9. 
 

 
 

 
 
 

Figure 9. The Process of Building a Predictive Model 
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Overfitting. A problem that can occur is that the model created can overfit the data. As described 
in Section III, overfitting means that the specification of a model is in large part an artifact of the 
idiosyncrasies of the data set used to build it (i.e., the training set).  Overfitting occurs when a 
model essentially memorizes the data on which is was built.  The model should learn the patterns 
in order to recognize them in future unseen datasets, but the model should not memorize the 
patterns.  The problem with the model memorizing the training set, is that when the model scores 
an unknown record, it will use the results from the model set if there is a match, and if not, it will 
produce a random guess.  In that case the model is entirely unstable, i.e. it will do no better than 
random for the score set. 
4.4 Assess Model   

The model should now be assessed to ensure that it meets the data mining success 
criteria and passes the desired test criteria.  This step is a purely technical assessment based on 
the outcome of the modeling tasks. 

Two tools commonly used to assess the performance of different models are the lift chart 
and the confusion matrix.   

A lift chart, sometimes called a cumulative gains chart, or a banana chart, is a measure of 
model performance.  It shows how responses, (i.e., to a direct mail solicitation, or a surgical 
treatment for instance) are changed by applying the model.  This change ratio, which is hopefully, 
the increase in response rate, is called the “lift”.   A lift chart indicates which subset of the dataset 
contains the greatest possible proportion of positive responses.  The higher the lift curve is from 
the baseline, the better the performance of the model since the baseline represents the null 
model, which is no model at all. 

To explain a lift chart, suppose we had a two-class prediction where the outcomes were 
yes (a positive response) or no (a negative response).  To create a lift chart, instances in the 
dataset are sorted in descending probability order according to the predicted probability of a 
positive response.  When the data is plotted, we can see a graphical depiction of the various 
probabilities.  While the example shown in Figure 10 plots the results of different datasets for a 
single model, a lift chart can also be used to plot the results of a single dataset for different 
models. 

Note that the best model is not the one with the highest lift when it is being built.  It is the 
model that performs the best on unseen, future data. 

 

Figure 10. Example of a “Good” Lift Chart. 
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The results of the lift chart shown in Figure 10 are interpreted as follows: the model 

results for the training set, indicates that 20% of the claims filed account for 50% of known fraud 
cases.   

The model results for the test and evaluation sets can be interpreted similarly.  
The baseline indicates the expected result if no model were used at all, i.e. the naive 

probability of 50-50. 
Figure 10 is an example of a good lift chart because not only does the chart exhibit good 

lift, but the results on the test and evaluation sets are similar.  As should be the case, the 
performance on the training set is better than the performance on the test set, which in turn is 
better than performance on the evaluation set. 

A confusion matrix, sometimes called a classification matrix, is used to assess the 
prediction accuracy of a model.  It measures whether a model is confused or not; that is, whether 
the model is making mistakes in its predictions.  Various classification rules are used in creating a 
confusion matrix.  The classification rules that incorporate prior probabilities, posterior 
probabilities and misclassification costs are based on Bayesian statistical decision theory.  
Bayesian theory essentially revises prior probabilities based on additional available information 
[Sharma 1996]. The format of a confusion matrix for a two-class case with classes yes and no is 
shown in Figure 11. 

 

 
Figure 11. A Confusion Matrix for a Two-Class Case 
 

The actual vales in a confusion matrix are often represented as percentages.  Whether or 
not a confusion matrix is “good” depends on the costs of misclassification.  

At the conclusion of the model building and assessment processes, the most appropriate 
model will be the model that meets the business objectives.  

 
 
 
 
 
 
 

5.  Evaluation 
Previous evaluation steps dealt with factors such as the accuracy and generality of the 

model.  This step assesses the degree to which the model meets the business objectives and 
seeks to determine if there is some business reason why the model is deficient.  It compares 
results with the evaluation criteria defined at the start of the project. 

A good way of defining the total outputs of a data mining project is to use the equation: 
results = ƒ(models, findings)                                                                     (1) 

In Equation 1, we define the total output of the data mining project as not just the models, but also 
the findings which can be defined as anything (apart from the model) that is important in meeting 
objectives of the business. 
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5.1 Evaluate Results 
Previous evaluation steps dealt with factors such as the accuracy and generality of the 

model.  This step assesses the degree to which the model meets the business objectives and 
seeks to determine if there is some business reason why this chosen model is deficient.  Another 
option of evaluation is to test the model(s) on test applications in the real application if time and 
budget permits. 
5.2 Review Process 

At this point the resultant model appears to be satisfactory and appears to satisfy 
business needs.  It is now appropriate to make a more thorough review of the data mining project  
in order to determine if there is any important factor or task that has somehow been overlooked.  
At this stage of Data Mining, the Review Process takes on the form of a Quality Assurance 
Review. 
5.3 Determine Next Steps 

According to the assessment results and the process review, the analyst decides how to 
proceed at this stage.  The analyst needs to decide whether 

• to finish the project and move on to deployment (Phase 6) or  
• to initiate further iterations or  
• to set up new data mining projects. 
 
 
 
 
 

6.  Deployment 
Creation of the model is generally not the end of the project. Even if the purpose of the 

model is to increase knowledge of the data, the knowledge gained will need to be organized and 
presented in a way that the client can use. Depending on the requirements, the deployment 
phase can be as simple as generating a report or as complex as implementing a repeatable data 
mining process. In many cases it will be the client, not the data analyst, who will carry out the 
deployment steps. However, even if the analyst will not carry out the deployment effort it is 
important for the client to understand up front what actions will need to be carried out to make use 
of the models created. 
6.1 Plan Deployment 

To deploy the data mining result(s) into the business, this task takes the evaluation 
results and develops a strategy for deployment.  If a general procedure was identified to create 
the relevant model(s), this procedure is documented here for later deployment. 
6.2 Plan Monitoring and Maintenance 

Monitoring and maintenance are important issues if the data mining result becomes part 
of the day-to-day business and its environment.  A careful preparation of a maintenance strategy 
helps to avoid unnecessarily long periods of incorrect usage of data mining results.  To monitor 
the deployment of the data mining result(s), the project needs a detailed plan on the monitoring 
process.  This plan takes into account the specific type of deployment. 
6.3 Produce Final Report 

At the end of the project, the project leader and the team write up a final report.  
Depending on the deployment plan, this report may be only a summary of the project and its 
experiences (if they have not already been documented as an ongoing activity) or it may be a 
final and comprehensive presentation of the data mining result(s). 
6.4 Review Project 

Assess what went right and what went wrong, what was done well and what needs to be 
improved. 
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VII. CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH 

CONCLUSIONS 
Today, most enterprises are actively collecting and storing data in large databases.  

Many of them have recognized the potential value of these data as an information source for 
making business decisions.  The dramatically increasing demand for better decision support is 
answered by an extending availability of knowledge discovery, and data mining is one step at the 
core of the knowledge discovery process.  This tutorial has illustrated how data mining centers 
about developing algorithms for extracting structure from data and how that structure can take the 
form of statistical patterns, models, and relationships.  These structures provide a basis within 
which to predict and anticipate when certain events occur and when viewed at this level, one 
begins to understand the fundamental importance of data mining.  Opportunities for further 
research abound particularly as the Internet provides businesses with an operational platform for 
interaction with their customers around the clock without geographic or physical boundaries.  
Therefore, from a strategic perspective, the need to navigate the rapidly growing universe of 
digital data will rely heavily on the ability to effectively manage and mine the raw data.   

DIRECTIONS FOR FURTHER RESEARCH  
The following is a (naturally incomplete) list of issues that warrant further investigation in 

the emerging field of data mining: 
 
• Privacy:  With such enthusiasm and opportunity for data mining the Internet, the 

serious issue of privacy needs to be handled effectively.  Although privacy is not only 
an issue with data mining and the Internet, data mining researchers and practitioners 
need to be constantly aware of the implications of tracking and analysis technologies 
on privacy.  Without properly addressing the issue of privacy on the Internet, the 
abundance of data may eventually flow much slower due to regulations, and other 
corrective or preventive restrictions. 

• Progress toward the development of a theory:  Progress toward the development of a 
theory regarding the correspondence between techniques and the specific problem 
domain to which they apply is needed. Questions regarding the relative performance 
of the various data mining algorithms remain largely unresolved. With a myriad of 
algorithms and problem sets to which they are applied, a systematic investigation of 
their performance is needed to guide the selection of a data mining algorithm for a 
specific case. 

• Extensibility: Different techniques outperform one another for different problems.  
With the increasing number of proposed data analysis techniques as well as reported 
applications, it appears that any fixed set of algorithms will not be able to cover all 
potential problems and tasks.  It is therefore important to provide an architecture that 
allows for easy syntheses of new methods, and for the  adaptation of existing 
methods with as little effort as possible.   

• Integration with databases:  Most of the cost of data mining is not in the modeling 
algorithms; rather it is in data cleaning and preparation, and in data maintenance and 
management.  The development of a standard application programming interface 
(API) and the subsequent integration with a database environment could reduce the 
costs associated with these tasks.  The issues regarding data cleaning, preparation, 
maintenance and management are challenges that face databases, data 
warehouses, and decision support systems in general. 

• Managing changing data:  In many applications, particularly in the business domain, 
the data is not stationary, but rather changing and evolving.  This changing data may 
make previously discovered patterns invalid and as a result, there is clearly a need 
for incremental methods that are able to update changing models, and for strategies 
to identify and manage patterns of temporal change in knowledge bases. 
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• Non-standard data types:  Today’s databases contain not only standard data such as 
numbers and strings, but also large amounts of non-standard and multi-media data, 
such as free-form text, audio, image and video data, temporal, spatial, and other data 
types.  These data types contain special patterns, which cannot be handled well by 
the standard analysis methods, and therefore, require special, often domain-specific, 
methods and algorithms. 

• Support for both analysis experts and novice users:  With the current focus on 
technology and the automated techniques, rather than on the actual processes of 
exploration and analysis, many people perceive data mining as a product rather than 
as a discipline that must be mastered. Further most of the available tools are aimed 
at analysis experts and require an unaffordable amount of training before being 
useful to novice end users, who, while being less skilled in complex data analysis, 
have a thorough understanding of their knowledge domain. 

• Pattern Evaluation:  Several challenges remain regarding the development of 
techniques to assess the interestingness of discovered patterns as a data mining 
system can uncover thousands of patterns, but many of the patterns discovered may 
be uninteresting to the given user, i.e. representing common knowledge or lacking 
novelty.  The use of interestingness measures, to guide and constrain the discovery 
process as well to reduce the search space is an active area for research. 

FINAL REMARKS 
While there are fundamental problems to be solved and challenges to be addressed, the 

benefits of data mining have been demonstrated in a broad range of application domains.  The 
combination of urgent practical needs and the strong research interests seem to indicate that 
rather than it being a technology that receives early adopter enthusiasm, then eventually wanes; 
data mining seems certain to become mainstream and enjoy a wide adoption. 

 
Editor’s Note: This article is based on a tutorial presented by the author at AMCIS 2001 in Boston.  The 
manuscript was received on July 1, 2001. It was with the author for approximately four and a half months for 
two revisions. It was published on March  ,2002  
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